Welsh Government

M4 Corridor around Newport

Environmental Statement Volume 3: Appendix 16.3

Water Treatment Area DMRB Risk Assessments

M4CaN-DJV-EWE-ZG_GEN-RP-EN-0005

At Issue | March 2016

CVJV/AAR 3rd Floor Longross Court, 47 Newport Road, Cardiff CF24 0AD

Contents

		Page
1	Introduction	1
2	Drainage Design	3
3	Water Treatment Area Stages	7
4	Risk Assessment	16
5	Conclusions	27

Annexes

Annex A HAWRAT calculation sheets

1 Introduction

1.1 Background

- **1.1.1** This Water Environment Risk Assessment (WERA) is designed to meet the requirements of the Design Manual for Roads and Bridges (DMRB) standards prescribed in Volume 11 Section 3 Part 10 (HD45/09) titled 'Road Drainage and the Water Environment' ('the Standard') (Highways Agency *et al.*, 2009).
- **1.1.2** The Standard gives guidance on the assessment and management of the impacts that road projects may have on the water environment during operation. These include possible impacts on the quality of waterbodies and on the existing hydrology of the catchments through which roads pass.
- **1.1.3** Possible impacts on the water environment resulting from construction of the Scheme and their monitoring and mitigation are reported within the Environmental Statement (ES) and Pre-Construction Environment Management Plan (Pre-CEMP) in accordance with the obligations and requirements of environmental legislation policy.
- **1.1.4** This report supports Chapter 16 of the ES for the M4 Corridor around Newport (hereafter referred to as the Scheme).

1.2 **Objectives**

- **1.2.1** In accordance with the Standard, the objective of the WERA is to provide a surface water dataset that shall enable the characterisation of baseline water conditions (in terms of quality, level and flow) in sufficient detail to allow:
 - effects of routine runoff on surface waters;
 - effects of routine runoff on groundwater; and
 - pollution impacts from spillages.
- **1.2.2** Flood impacts arising from the Scheme are assessed and reported separately within the Flood Consequences Assessment (FCA) forming Appendix 16.1 of the ES.

1.3 General Approach

- **1.3.1** The Standard specifies procedures for the assessment of pollution impacts from routine runoff on surface waters, groundwater and from accidental spills, known as Method A, Method C and Method D respectively.
- **1.3.2** Only Methods A and D have been used as all proposed road drainage outfalls have been designed to discharge to surface waters, therefore there would be no pollution impact on groundwater from routine runoff.
- **1.3.3** The Method A assessment comprises two separate elements the Highways Agency Water Risk Assessment Tool (HAWRAT) (Highways Agency Drainage Data Management System (HADDMS), 2009) and the Environmental Quality Standards (EQS) assessments.

- **1.3.4** HAWRAT is an application designed to assess the short term risks related to the intermittent nature of road runoff. It assesses the acute and chronic pollution impacts on aquatic ecology associated with soluble and sediment bound pollutants respectively. It is used to help highways designers decide whether pollution mitigation measures are needed in specific circumstances.
- **1.3.5** Full details on the development and use of HAWRAT can be found in the Standards and in the HAWRAT User's Manual (HADDMS, 2009), which includes background information on the research programme behind the tool, derivation of the toxicity thresholds used and explanation of the background calculations.
- **1.3.6** EQS are the maximum permissible annual average concentrations of potentially hazardous chemicals, as defined under the Water Framework Directive (WFD). The long term risks over the period of one year are assessed through comparison of the annual average concentration of pollutants discharged with the published EQS for those pollutants.
- **1.3.7** The Method D assessment is an empirical methodology utilising look up tables for probabilities of accidents and risk from pollution. Mitigation can be considered in the form of risk reduction factors associated with up to two complementary drainage treatment types.

1.4 Supporting Reports

- **1.4.1** The routine runoff drainage design for the new section of motorway is reported within the Drainage Strategy Report forming Appendix 2.2 of the ES.
- **1.4.2** Mitigation of existing watercourses severed by the Scheme is reported in the Reen Mitigation Strategy forming Appendix 2.3 of the ES.
- **1.4.3** The findings of an ongoing programme of baseline monitoring of surface watercourses and groundwater is reported within the Baseline Water Environment Report forming Appendix 16.2 of the ES.

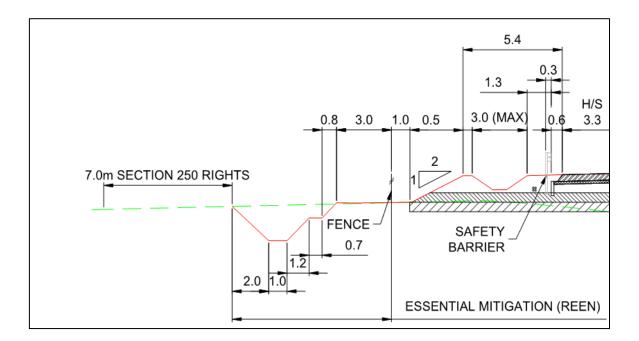
2 Drainage Design

2.1 **Design Principles**

Overview

2.1.1 For the majority of its length, the proposed new section of motorway is located within the Caldicot and Wentlooge Levels (collectively known as the Gwent Levels), which comprise soft ground with a very high water table. In order to minimise settlement, impact upon the ground water level and visual intrusion, it is proposed to maintain a low level embankment on which the motorway is constructed.

Surface Water Setting


- **2.1.2** The surface water setting of the proposed new section of motorway drainage design is described within the Baseline Water Environment Report (Appendix 16.2 of the ES). The proposed alignment would cross three distinct topographic zones:
 - high elevation, Devonian hills in the west around Castleton (Junction 29) (elevation of up to approximately 60 metres Above Ordnance Datum (AOD));
 - low-lying, flat coastal plain of Gwent Levels (elevation of below 10 metres AOD); and
 - high elevation Carboniferous hills in the east around Magor (Junction 23A) (elevation of up to approximately 60 metres AOD).
- 2.1.3 In its mid-section, the route would cross the River Ebbw and River Usk which discharge into the Severn Estuary, to the south of Newport. The proposed alignment would also cross the Alexandra Docks, between the Usk and Ebbw. To the west and east are the Wentlooge Levels and Caldicot Levels respectively. Only in the vicinity of Newport and Llanwern are the Gwent Levels extensively developed.
- 2.1.4 The Gwent Levels are dissected by an extensive network of tide locked freshwater drains, locally known as reens, that drain a complex array of smaller internal field drains. The Gwent Levels are almost entirely designated as Sites of Special Scientific Interest (SSSIs).
- 2.1.5 Natural Resource Wales (NRW) maintain agreed summer and winter "penning levels" within the system as described in their Water Level Management Plan (CWLDB, 1995). The change to low winter penning levels occurs in October, with water levels raised to the high summer penning levels in July. In addition to maintaining water levels through the system of sluice gates, NRW also undertake an annual programme of dredging and clearance of the main reens.
- **2.1.6** Field observations during water quality monitoring in 2015 demonstrate that during the summer penning months the reen system is characterised by extremely low flow with apparently stagnant areas. During the winter penning, lower levels are maintained to facilitate elevated flows to convey flood waters to the Severn Estuary.

Reen and Ditch Mitigation

- **2.1.7** New reens are generally provided on one side of the proposed new section of motorway to provide improved connectivity, by connecting existing reens severed by the alignment to culverts located through the embankment. These reens would be excavated to a depth of 2 metres with 1 in 1 side slopes, a 0.7 metre berm and approximately 5.7 metres wide at the surface. The total length of replacement reens and field ditches would be equal to or greater than the reens and field ditches to be infilled.
- **2.1.8** On the other side of the proposed new section of motorway, smaller field ditches would be used to connect the existing field ditches to the nearest main reens. These would be 2.5 metres wide with 1 in 1 slopes and would be 1 metre deep.

Routine Runoff Capture

- **2.1.9** The very flat longitudinal gradients across the Levels would exclude the use of kerb and gully and a piped drainage system because the longitudinal falls necessary for this system could not be achieved in an efficient way.
- **2.1.10** It is therefore proposed to intercept the runoff from the motorway into impermeably lined grassed channels in the verge (Inset 1). It is anticipated that they would be lined with a geo-synthetic clay liner below 50 mm of topsoil. This eliminates the risk of surface water runoff containing possible pollutants seeping into the underlying ground.
- **2.1.11** The grass lined channels would be trapezoidal shaped typically 2.1 metres wide, widening to 3 metres wide and 0.8 metres deep near the outfall points,. Side slopes would be 1 in 1.5 side slopes. These channels would route surface water overland from the drained carriageway to the water treatment areas (WTA). The grassed channels would follow the gradient of the motorway, typically 1 in 7,000 through the Levels.
- 2.1.12 Over some stretches of the proposed new section of motorway, the road would be super-elevated and drainage to the median channel would be required. The central reserve would be hardstanding, with a concrete vertical concrete barrier where a concrete channel would be used. The channel would be designed for a 1 in 5 year return period and outfalls are generally limited to locations which are close to the WTA, i.e. at the low points.
- **2.1.13** The size of the channel would be limited by the amount of space available in the central reserve. Generally the central reserve would be 1.5 metres wide, however as a result of widening for visibility on some curved sections the size may vary. The depth of the channel would be limited to 0.15 metres as this is the largest allowable depth which is not required to have a barrier between the channel and the road edge.
- **2.1.14** The South Wales Trunk Road Agency (SWTRA) have proposed that they would maintain the grassed channels using self-propelled or remote control mowers. These would require cutting 3 times a year in late spring and summer. Grass length should not be longer than 75 mm, in accordance with DMRB HA 119/06 (Highways Agency *et al.*, 2006a).

Inset 1: Typical section of highway across the Gwent Levels

Groundwater

2.1.15 No routine runoff is designed to be discharged to soakaway or permeable channels that would present a risk to groundwater. The assessment of the effects of routine runoff on groundwater (DMRB Method C) is therefore not required.

Flood Risk

- 2.1.16 The grassed channels within the SSSI designated areas of the Gwent Levels are currently proposed to cater for a 1 in 100 year storm event with a 30% allowance for climate change. Substantial storms in excess of this return period event would overflow over the highway embankment into the adjacent field reens, but it is considered that a storm intensity of this magnitude would dilute any pollutants to acceptable levels, and that the statistical probability of the storm occurring is very low.
- **2.1.17** The culverts beneath the proposed new section of motorway embankment with discernible catchments would be designed to cater for the 1 in 100 year plus climate change storm events.
- **2.1.18** Each attenuation lagoon would be designed to cater for a 1 in 100 year storm event with an allowance for climate change. Historically, the greenfield runoff rate has been restricted to 3.5 litres/second/hectare (I/s/ha) as set by NRW. Through consultation during the EIA process, NRW have stated that this value is appropriate for the design.
- **2.1.19** Flood risk impacts have been reported within the Flood Consequence Assessment forming Appendix 16.1 of the ES. The modelling concludes the impact from flooding is of neutral significance in DMRB terms, i.e. change in peak flood level within +/- 10 mm at 1% annual probability, as a consequence of the construction of the new section of motorway. It is judged that local exceedances

of this criteria can be mitigated through management of sluices incorporated into the drainage design.

Water Treatment Areas

- **2.1.20** Bespoke WTA are proposed for the routine highways drainage. These are typically located at low points along the alignment. The runoff in the grassed channels would discharge to desilting catchpits through a series of gully gratings.
- 2.1.21 The desilting catchpit would be constructed within the width of the grassed channel or the median channel and would be maintained from the motorway. From the catchpits the water would flow into the water treatment and attenuation areas. They would include the provision to capture hydrocarbons and grits prior to flows entering the main attenuation lagoons.

Treated Water Discharges

2.1.22 Surface water runoff, after attenuation and treatment, would discharge to the major reens draining the Gwent Levels. This would either be directly by pipe or by the addition of engineered field ditches, which would discharge to the main reens. Table 2.1 summarises the drained areas flowing to each proposed outfall.

Outfall	Contributing Impermeable	Chai	nage	Drain Channel	Notes
Outian	Area (Ha)	Start	End	Туре	Notes
1	9.3	1+350	3+000	Concrete	A48M / Existing M4 Junction
2	11.5	3+000	4+300	Concrete	M4CaN / Existing M4 Junction
4a	4.3	4+300	6+500	Grass	Embankment in SSSI
4b	4.2	4+300	6+500	Grass	Embankment in SSSI
5	7.3	6+500	8+150	Grass	Embankment in SSSI
Ebbw West	1.3	8+150	8+400	Concrete	Embankment in SSSI
Ebbw East inc. SDR link	11.0	8+600	10+150	Concrete	Docks Junction and Usk Crossing (west)
Usk	2.9	10+150	11+100	Concrete	Usk Crossing (east)
6	4.8	11+100	12+400	Concrete/ Grass	Super Elevated
Meadows Road (north)	0.34	n	а	Concrete	Side Road
Meadows Road (south)	0.34	n	а	Concrete	Side Road
7	4.1	12+400	13+300	Grass	Embankment in SSSI
8	9.0	13+300	15+500	Grass	Embankment in SSSI
8a	1.0	n	а	Concrete	Glan Llyn Junction
North Row (north)	0.31	n	а	Concrete	Side Road
North Row (south)	0.34	n	а	Concrete	Side Road
9	15.8	15+500	19+100	Grass	Embankment in SSSI
10	3.3	19+100	20+250	Concrete	Embankment in SSSI
11b	6.0	20+250	21+250	Concrete	D2AP/M4CaN Junction
11c	5.0	21+250	22+050	Concrete	D2AP/Existing M4
12a	14.4	22+050	J23	Concrete	Existing M4
12b	0.73	J2	23	Concrete	D2AP/M48/Existing M4 Gyratory

Table 2.1: Drainage Outfall Characteristics

3 Water Treatment Area Stages

3.1 Introduction

- **3.1.1** Each WTA is proposed to provide bespoke runoff capture, bypass interception, settlement, flow attenuation, treatment and controlled discharge back to the water environment. This is achieved by a number of individual elements that when considered together represent a water treatment train.
- **3.1.2** The components making up the treatment train are described in this section and comprise the following:
 - stage 1 grass lined or concrete channels;
 - stage 2 bypass oil separator / pollution control lagoon;
 - stage 3 wet balancing pond; and
 - stage 4 sub surface flow (SSF) reed bed.

3.2 Stage 1: Grass Lined Channels

- **3.2.1** CIRIA C609 (CIRIA, 2004) summarises that grass lined channels should be designed to:
 - treat the water quality volume to remove pollution;
 - provide storage as necessary to achieve other design criteria;
 - half empty within 24 hours so that storage and treatment is available for following events and vegetation is not damaged by saturated conditions (unless it is a wet swale); and
 - convey runoff from extreme events through the swale without causing erosion.
- **3.2.2** Additionally, the principal pollutant removal mechanisms are summarised as:
 - settling and trapping of sediment in vegetation;
 - adhesion of sediment and pollutants to plants;
 - filtering and adsorption in the underlying soils (dry swales only); and
 - nutrient uptake by plants.
- **3.2.3** For the purposes of assessment, a number of key contaminants are identified within these broad groups of pollutants, as discussed in Section 4 of this report.
- **3.2.4** Swales generally remove pollutants for frequent small storm events (Ellis, 2003). For larger, less frequent storms of between a 50 and 10 per cent annual probability (1 in 2 and 1 in 10 year return period), they can act as a storage and conveyance mechanism.
- **3.2.5** For larger storms with an annual probability of less than 10 per cent (return periods greater than 1 in 10 years), providing storage in swales may become impractical as catchment size increases and they are often used in conjunction with other techniques.

- **3.2.6** The use of grassed channels has been identified as a means of reducing pollution and promoting a more sustainable drainage system compared to conventional drainage systems. The proposed grassed channels would be dry during dry weather, enhancing their pollutant removal capability, but during a rainfall event the water would flow into them from the carriageway and move slowly to the outfall point. The flow of water would be retarded and filtered by the grass. Sediment would be deposited and oily residues and organic matter retained and broken down in the top layer of soil and vegetation.
- **3.2.7** Additionally, during a rainfall event, a proportion of the runoff may be lost due to evaporation and transpiration. The grass lined channels would have maximum dimensions of 3 metres across the top and 0.6 metres at the base with a depth of 0.8 metres. This equates to an in channel storage volume of up to 1.44 m³ per linear metre. Within the Levels embankment sections, the proposed new section of motorway would incorporate grass-lined channels on both carriageways. Given the length of embankment present, a significant additional storage volume is present within these channels totalling up to 2,880 m³ of storage for every kilometre of embankment.
- **3.2.8** Generally, the performance data show that well-designed and well-maintained swales are good at removing potential pollutants associated with routine runoff, particularly total suspended solids (TSS), metals and hydrocarbons. However, swales are less effective at removing dissolved pollutants and very low removal rates (of less than 10 per cent) can be expected.
- **3.2.9** Studies reported in CIRIA C609 concluded that confidence in removal efficiency fell with lower residence times and that the distance water travelled along a swale had a strong influence on pollutant removal and increased travel along the swale improved removal of total suspended solids. Similarly, water depth also affected removal rates. A greater depth resulted in less effective removal of total suspended solids, because the water flowed over the vegetation rather than being filtered through it. The same effect was noted for metals, as would be expected, since metals in runoff are generally attached to sediment.
- **3.2.10** The very long (> 1 kilometre), low fall (1 in 7,000) grass lined channel lengths proposed within the drainage strategy are considered to be highly effective attenuation pathways for highways runoff providing long residence times and low flows for the substantial majority of storm events. These are the most favoured conditions for maintaining high pollutant attenuation efficiencies.

3.3 Stage 2: Bypass Oil Separator / Pollution Control Lagoon

3.3.1 The first stage of treatment within the WTA would be a Pollution Control Lagoon designed with a storage capacity of 50 m³ capable of separating oil via a baffle plate. In addition to acting as a bypass oil separator, this lagoon would also function as a grit and sediment trap as well as a means of containing a major spill on the carriageway which is capable of flowing into a WTA. A Pollution Control Valve would permit this volume to be isolated and bypassed to allow pollutant recovery.

3.4 Stage 3: Wet Balancing Pond

- **3.4.1** Each WTA would incorporate a permanently wet balancing pond providing a bunded volume of up to 1.1 metre above existing ground level to retain the 1 in 100 year plus 30% climate change rainfall event. The balancing pond would have a nominal depth of 2 metres to benefit from limited groundwater recharge from the Tidal Flat Deposits within which it would be constructed.
- **3.4.2** The outfall from the balancing pond would pass through a flow control device to maintain an appropriately attenuated discharge into the adjacent reed bed.
- **3.4.3** The size of the permanent volume would be several times larger than the runoff generated by a 6 hour, 5 mm/hour rain event as summarised in Table 3.1. This storm magnitude is used as a large rainfall event that can be used to represent a worst case volume of runoff from the highway as 95% of rainfall events within the UK are likely to be of lower intensity. The runoff from this event, prescribed by HAWRAT to be 50% of total rainfall for impervious surfaces, is used to determine balancing pond capability to provide attenuation by dilution within the permanent wet volume.
- **3.4.4** Dilution is an important attenuation process for inorganic pollutants within routine runoff, principally comprising chloride and sulphate. Indicative dilution efficiencies are provided in Table 3.1 based on a ten-fold runoff to lagoon concentration difference, i.e. a winter storm flushing applied road salt (chloride) from the carriageway at a mean concentration of 500 milligrams / litre (mg/l) for 6 hours arriving in each WTA lagoon with a baseline concentration of 50 mg/l.

WTA	Contributing Impermeable Area (Ha)	Wet Volume (m ³)	Wet Area (m²)	Additional 1 in 100 yr Rainfall Volume (m ³)	6 hr 5mm/hr Volume 50% runoff (m ³)	Lagoon / storm volume ratio	Indicative dilution efficiency
1	9.3	6,680	4,940	9,000	2,790	5	74%
2	11.5	13,050	6,540	10,500	3,270	7	79%
4a	4.3	8,964	5,580	4,200	1,290	13	83%
4b	4.2	5,940	4,225	4,200	1,260	10	82%
5	7.3	23,079	12,239	7,000	2,190	21	86%
6	4.8	6,465	4,303	4,000	1,440	9	81%
7	4.1	3,725	2,971	3,600	1,230	6	77%
8	9.0	8,261	5,341	8,400	2,700	6	77%
8a	1.0	3,590	2,438	3,500	300	24	86%
9	15.8	27,255	16,299	13,000	4,740	12	83%
10	3.3	20,439	10,898	2,700	990	41	88%
11b	6.0	4,034	4,870	7,950	1,800	9	81%
11c	5.0	2,255	2,130	5,100	1,500	3	68%
12a	14.4	20,775	11,085	18,000	4,320	10	82%
12b	0.73	354	571	675	439	2	56%

Table 3.1: Wet Balancing Pond Attributes

3.4.5 The WTA wet balancing ponds would provide a 2-fold minimum, 41-fold maximum and a 12-fold mean volume dilution for the design rainfall event.

3.5 Stage 4: Reed Bed

- **3.5.1** Given the high ambient water quality present within the Gwent Levels, a high standard of water treatment is required in order to mitigate risks of pollution from routine runoff from the proposed new section of motorway.
- **3.5.2** Captured and treated routine runoff is typically discharged to surface watercourses where some level of dilution can be relied upon even under low flow conditions. However, within the Gwent Levels, penning of reens is undertaken where natural flows are significantly restricted to preserve water levels within the interconnected field drains. Under periods of low rainfall, particularly during summer penning, it is anticipated that the reens proposed to accept routine runoff would not exhibiting extremely low flow and would effectively offer no in channel dilution. This is a conservative approach as drainage of the Gwent Levels takes place via ditches and ultimately reens. The presence of penning, however, may result in water being temporarily held without significant flow, particularly during the summer months.
- **3.5.3** It has therefore been necessary to include within each Water Treatment Area a dedicated wetland area comprising reed beds to provide the necessary treatment of residual soluble and suspended pollutants. Reed beds are widely acknowledged to provide a relatively high level of treatment. Thus is particularly true where the reed bed forms part of a wider hierarchy of complementary stages and flows are attenuated to provide a low energy environment with adequate residence times for pollutant uptake and attenuation to occur.
- **3.5.4** Owing to the episodic and statically variable nature of runoff events, there are no absolute design criteria available for reed bed sizing. However there are a number of empirical relationships established to assist in providing an effective design based on a number of both site specific and generic criteria, as follows:
 - flow rate each WTA discharges at the greenfield run-off rate based on the contributing impermeable area;
 - depth a nominal depth of 1 m is assumed within the Drainage Design Strategy;
 - gradient between 0.5% and 1% recommended;
 - down gradient fall maximum 0.2 m stipulated within the Drainage Design Strategy;
 - substrate / root zone porosity between 20% and 40% recommended;
 - hydraulic retention time (HRT) between 10 and 15 hours recommended;
 - hydraulic loading rate (HLR) below 1 m³/m²/day recommended with an optimum value of 0.2; and
 - aspect ratio some evidence supporting minimum of width/length ratio of 4.
- **3.5.5** Reed bed areas have been calculated utilising the volume required to provide a 15 hour resident time for flows at each WTA greenfield discharge rate. Reed bed depth and porosity are used to derive an indicative surface area based on the flow volume associated with the desirable residence time, i.e.

Area = through flow volume / (depth x porosity)

3.5.6 Such empirical approaches aim to provide a volume of reed bed considered to be of sufficient size and performance standard to ensure the treatment efficiencies previously summarised. To calculate reed bed areas, mid values were taken from any recommended ranges to produce an indicative design area. Table 3.2 summarises the parameters utilised to calculate the optimum sized reed bed for each WTA and the proposed size given. In all cases the proposed reed bed areas are within the range encompassed by the stated recommended input parameter distributions.

3.6 Assessment of Treatment Train Efficiency

3.6.1 A number of research references are available providing prescriptive guidance on the evaluation of runoff attenuation efficiency for various types of drainage infrastructure and treatment techniques. Table 3.3 summarises the principal treatment stages commonly utilised to mitigate highway runoff and the process responsible for reductions in pollution loadings for the principal groups of contaminants.

WTA	Contributing Impermeable Area (Ha)	Discharge rate (I/s)	HRT Volume (m ³)	HRT Area (m²)	Proposed Area (m²)	Difference
1	9.3	32.6	4,395	6,510	7,100	+9%
2	11.5	38.2	5,150	7,630	7,210	-6%
4a	4.3	15.1	2,032	3,010	3,890	+29%
4b	4.2	14.7	1,985	2,940	3,750	+28%
5	7.3	25.6	3,449	4,599	6,329	+24%
6	4.8	16.8	2,268	3,360	3,336	-1%
7	4.1	14.4	1,937	2,870	2,859	-0.4%
8	9.0	31.5	4,253	6,300	6,379	+1%
8a	1.0	3.5	473	700	3,373	+382%
9	15.8	55.3	7,466	11,060	10,299	-7%
10	3.3	11.6	1,559	2,310	8,062	+249%
11b	6.0	21.0	2,835	4,200	2,770	-34%
11c	5.0	17.5	2,363	3,500	3,200	-9%
12a	14.4	50.4	6,804	10,080	11,595	+15%
12b	0.73	5.1	691	1,023	450	-56%
Totals				71,534	80,602	+13%

Table 3.2: WTA Reed Bed Attributes

Table 3.3: Typical Pollutant Removal Efficiencies (HA 103/06)

Pollutant Group	Swales	Infiltration Basins	SF Wetlands	SSF Wetlands	Balancing Ponds	Sed. Ponds
TSS and associated heavy metals	Filtering	Filtering Settlement	Filtering Settlement	Filtering	Settlement	Settlement
Heavy metals (particulate and soluble)	Filtering Adsorption	Filtering Plant uptake Settlement Adsorption Precipitation	Filtering Settlement Adsorption Plant uptake	Adsorption Filtering Plant uptake	Settlement Adsorption	Settlement Plant uptake Adsorption Precipitation

Pollutant Group	Swales	Infiltration Basins	SF Wetlands	SSF Wetlands	Balancing Ponds	Sed. Ponds
Organic compounds (particulate and soluble)	Filtering Adsorption	Filtering Settlement Adsorption Biodeg. Volatilisation	Filtering Settlement Adsorption Biodeg. Volatilisation	Adsorption Biodeg. Filtering	Settlement Adsorption Biodeg. Volatilisation	Settlement Adsorption Biodeg. Volatilisation
Oil and grease	Filtering Adsorption	Filtering Adsorption Settlement Biodeg.	Filtering Adsorption Settlement Biodeg.	Filtering Adsorption Biodeg.	Settlement Adsorption Biodeg.	Adsorption Settlement Biodeg.
Nutrients	Plant uptake	Plant uptake	Plant uptake	Plant uptake	Plant uptake	Plant uptake

Note: bold type indicates dominant processes. Biodeg. = biodegradation.

3.6.2 Tables 3.4a and 3.4b provides a summary of typical attenuation efficiency factors associated with the above treatment stages derived from HA103/06 (Highways Agency *et al.*, 2006b) and CIRIA C609 (Wilson *et al.*, 2004), respectively. The values represent the typical overall performance that could be expected to be achieved given the high variability and site specific performance constraints that may be present.

Table 3.4a: Typical Pollutant Removal Efficiencies (HA 103/06)

Pollutant	Swales	Infiltration Basins	SF Wetlands	SSF Wetlands	Balancing Ponds	Sedimentation Ponds
TSS and associated heavy metals	60-100% 80%	60-100% 80%	60-100% 80%	60-100% 80%	30-60% 45%	60-100% 80%
Heavy metals	30-100%	30-100%	30-100%	60-100%	0-30%	0-60%
in solution	65%	65%	65%	80%	15%	30%
Oil and grease	60-100%	30-100%	60-100%	60-100%	30-60%	30-60%
	80%	65%	80%	80%	45%	45%
Nutrients	0-30%	0-30%	30-100%	60-100%	0-30%	0-60%
	15%	15%	65%	80%	15%	30%

Median values added in bold.

Table 3.4b: Typical Pollutant Removal Efficiencies (CIRIA C609)

Pollutant	Dry Grassed Swales	Infiltration Basins	Oil Separator	Stormwater Wetlands	Balancing Ponds	Extended Detention Basin
TSS	70-90%	45-75%	0-40%	80-90%	75-90%	65-90%
	80%	60%	20%	85%	82.5%	77.5%
Heavy metals	80-90% 85%	85-90% 87.5%	ID	50-60% 55%	50-80% 65%	40-90% 65%
Hydrocarbons	70-90%	ID	40-90%	50-80%	30-60%	30-60%
(inc. PAH)	80%		65%	65%	45%	45%
Total phosphorus	30-80%	60-70%	0-5%	30-40%	30-50%	20-50%
	55%	65%	2.5%	35%	40%	35%
Total nitrogen	50-90%	55-60%	0-5%	30-60%	30-50%	20-30%
	70%	57.5%	2.5%	45%	40%	25%

Median values added in bold. ID=insufficient data to quote removal rate.

3.6.3 The efficiencies cited in this assessment are subject to the drainage systems being properly installed and maintained. Standards expected to be maintained

are set out within DMRB report HA 103/06 Vegetated Drainage Systems for Highway Runoff (Chapter 6 Maintenance and Management of Vegetated Drainage Systems) (Highways Agency *et al.*, 2006b).

- **3.6.4** The key treatment stage for highway runoff from the embankments within the Gwent Levels would be the road side grass lined, dry channels. Such channels are widely reported to provide high treatment efficiencies particularly of suspended solids and associated pollutants as well as of treatment of metals within the grass root zone. Grass lined channels are typically quoted for being effective over relatively short distances of the order of tens of metres. The proposal to install thousands of metres of grass lined channels is therefore considered to have the potential to present very high pollutant attenuation of routine highway run off and of potential spillages resulting from accidents.
- **3.6.5** The treatment train proposed for the proposed new section of motorway is summarised in Table 3.5 together with indicative design treatment efficiencies and the resultant in train cumulative efficiency that can be relied upon for drainage mitigation.

Pollutant	Stage 1 Grass Lined Channel	Stage 2 Interceptor/ Detention Basin	Stage 3 Sedimentation Pond	Stage 4 Reed Bed
TSS / suspended heavy metals	80%	77.5%	80%	80%
Heavy metals – dissolved	75%	65%	30%	80%
PAHs*	80%	65%	45%	80%

Table 3.5a: Efficiencies of Proposed 4 Element Scheme Treatment Train

* Figures for oil interceptor component

Table 3.5b: Efficiencies of Proposed 3 Element Scheme Treatment Train

Pollutant	Stage 1 Interceptor/ Detention Basin	Stage 2 Sedimentation Pond	Stage 3 Reed Bed
TSS / suspended heavy metals	77.5%	80%	80%
Heavy metals - dissolved	65%	30%	80%
PAHs	65%	45%	80%

Table 3.5c: Efficiencies of Proposed 2 Element Scheme Treatment Train

Pollutant	Stage 1 Balancing Pond	Stage 2 Oil Interceptor
TSS / suspended heavy metals	80%	20%
Heavy metals - dissolved	30%	0%
PAHs	45%	65%

3.6.6 CIRIA C609 provides guidance on assessing the pollutant removal efficiencies of treatment trains comprising the in series connection of a number of separate treatment systems located downstream of each other. It is recommended that 50% of the quoted removal efficiency is utilised for each subsequent treatment component.

- **3.6.7** Given some sections of the proposed new section of motorway are drained via kerb and gully with or without a lagoon, rather than grass lined channels, three treatment train efficiencies are calculated both with and without a grass lined channel and lagoon stage. Tables 3.6a and 3.6b summarises the cumulative efficiency of these proposed treatment trains following the conservative assessment methodology within CIRIA C609.
- **3.6.8** The overall cumulative efficiency figures in red of 95.6% and 91.4% for the four element treatment train and 91.9% and 82.2% for the three element treatment train are used in the HAWRAT assessments as mitigation for the treatment of suspended and soluble pollutants respectively.
- **3.6.9** For the Water Treatment Areas located within the Gwent Level's SSSIs, grass lined channels present on both sides of the carriageway, comprise very high lengths of drainage runs of between 1,800 and 7,200 metres.

Table 3.6a: Cumulative Treatment Efficiencies of Proposed 4 ElementDrainage System

Pollutant	Initial Runoff	100% (Line	STAGE 1 100% Grass Lined Channel		GE 2 ypass eptor	50% Sedime	GE 3 Wet entation end	STAC 50% W		Cumul.
	WTA IN %	Stage %eff	OUT %	Stage %eff	OUT %	Stage 50%	OUT%	Stage %eff	OUT %	TOTAL eff%
TSS / suspended heavy metals	100	80	20.0	77.5	12.3	80	7.4	80	4.4	95.6
Heavy metals - dissolved	100	75	25.0	65	16.9	30	14.3	80	8.6	91.4
Hydrocarbo ns / PAH	100	80	20.0	65	13.5	45	10.5	80	6.3	93.7
Nutrients	100	15	85.0	2.5	83.9	30	71.3	80	42.8	57.2

Table 3.6b: Cumulative Treatment Efficiencies of Proposed 3 Element Drainage System

Pollutant	Initial Runoff	100% E	GE 1 3ypass eptor	50%	GE 2 Wet Intation nd	STA0 50% We		Cumul.
	WTA IN %	Stage %eff	OUT %	Stage eff%	OUT %	Stage 50%	OUT %	TOTAL eff%
TSS / suspended heavy metals	100	77.5	22.5	80	13.5	80	8.1	91.9
Heavy metals - dissolved	100	65	35.0	30	29.8	80	17.9	82.2
Hydrocarbons / PAH	100	65	35.0	45	27.1	80	16.3	83.7
Nutrients	100	2.5	97.5	30	82.9	80	49.7	50.3

Pollutant	Initial Runoff	100% Balai	GE 1 6 Wet ncing ond	STAGE 2 50% Oil Interceptor		Cumul.
	WTA IN %	Stage %eff	OUT%	Stage 50%	OUT%	TOTAL eff%
TSS / suspended heavy metals	100	80	20.0	20	18.0	82.0
Heavy metals - dissolved	100	30	70.0	0	70.0	30.0
Hydrocarbons / PAH	100	45	55.0	65	37.1	62.9
Nutrients	100	2.5	97.5	15	90.2	9.8

Table 3.6c: Cumulative Treatment Efficiencies of Proposed 2 Element Drainage System

%eff=% removal efficiency. OUT%= output to following stage. Cumul. = cumulative.

4 **Risk Assessment**

4.1 Contaminants of Concern

- **4.1.1** The main pollutants present in highways run-off can be grouped in the following categories.
 - Sediment on its own or as a colloid site for metal and organic pollutants.
 - Metals vehicles and fuel combustion, metal corrosion.
 - Hydrocarbons lubricating oils, fuel, exhaust emissions and herbicides.
 - Salts and nutrients de-icing operations and fertilisers.
 - Microbial decay of organic matter / litter in verges.
- **4.1.2** For the assessment of routine runoff, the following key contaminants are modelled to represent the above pollutant groups, those considered within DMRB HAWRAT methodology are marked with an asterisk.
 - Total suspended solids (TSS).
 - Copper (total* and filtered*).
 - Zinc (total* and filtered*).
 - Cadmium (total)*.
 - Pyrene*.
 - Fluoranthene*.
 - Anthracene*.
 - Phenanthrene*.
 - Total PAH (total)*.
 - Chloride.

4.2 Compliance Criteria

- **4.2.1** NRW have been consulted on appropriate assessment methodologies for the assessment of impact to the Gwent Levels SSSIs water quality. Specific queries were raised to understand the relevance of several water quality compliance regimes which may require adherence. The following compliance regimes were identified:
 - 1. Former Countryside Council for Wales (CCW) 'trigger levels' for developments across the Gwent Levels SSSIs;
 - 2. Water Framework Directive standards both existing and emerging to protect the water environment;
 - 3. DMRB thresholds for the assessment of short term, acute and chronic impacts to surface water; and

- 4. Preservation of ambient baseline concentrations (ABC) within main reens determined by on-going baseline monitoring.
- **4.2.2** NRW provided the following comment:

'The Gwent Levels SSSIs are designated because they support a range of qualifying features (wetland plants and freshwater invertebrates) which are able to survive and/or thrive in the prevalent eutrophic conditions. Water quality trigger levels have been derived, historically by CCW but now used by NRW, to assist developers in designing their projects and in undertaking their water quality monitoring. The trigger levels indicate the concentration above which we become concerned that damage could be occurring to the SSSI features and which therefore needs to trigger follow up monitoring and potential remedial action. These levels have been derived locally but have come from expert knowledge of the Gwent Levels environment as well as evidence and lessons learnt from major developments in the area over the past 25 years.

From a WFD perspective, the Gwent Levels waterbodies are defined as artificial, heavily modified waterbodies. In practice this means that water quality criteria are not used as part of the routine classification of these waterbodies. In addition, environmental quality standards specific to an environment such as the Gwent Levels (a lowland, grazing marsh, drainage system) have not been drawn up

Regular water quality monitoring across the Gwent Levels undertaken by NRW occurs primarily to detect any gross pollution events. However, aspects of the WFD water quality standards are relevant; including the Environmental Quality Standards (EQSs) for Priority Substances, as set out in Table 1 of Part 3 of the WFD Directions 2015– of relevance to this project are cadmium and lead - as well as standards for specific pollutants which could have eco-toxicity, as set out in Table 1 of Part 2 of the same Directions – those substances of relevance here include copper and zinc.

However, results of pre-construction phase monitoring are vital to these discussions as these provide an indication of baseline conditions and therefore what is reasonably achievable both during and following any construction phase.'

4.2.3 The Gwent Levels baseline water environment status has been determined through four quarterly rounds of surface water monitoring conducted during 2005 and January 2016 capturing both summer and winter penning levels.

4.3 Runoff Source

- **4.3.1** The HAWRAT assessment tool deals with soluble (acute) and sediment related (chronic) pollutants associated with routine highways runoff. Acute pollution impacts are expressed as Event Mean Concentrations (EMCs in μg/l) for dissolved copper and zinc. Chronic pollution impacts are expressed as Event Mean Sediment Concentrations (EMSCs in mg/kg) for total copper, zinc, cadmium, and (in μg/kg) for pyrene, fluoranthene, anthracene, phenanthrene and total PAH (Polycyclic Aromatic Hydrocarbons).
- **4.3.2** The assessment tool uses statistically-based models for predicting the runoff quality for each pollutant based on data collected during the "Improved Determination of Pollutants in Highway Runoff Phase 2 project" (Dempsey & Song, 2007) and the "Long term monitoring of pollution from highway runoff" (Moy *et al.*, 2002).

- **4.3.3** The models use traffic density, climatic region and event rainfall characteristics to predict runoff quality in terms of EMCs and EMSCs. Using long term rainfall event data the models generate distributions of runoff quality that reflect the likely distributions of runoff quality that could be observed in practice.
- **4.3.4** The assessment tool also incorporates models for predicting the impact of the runoff on receiving rivers and streams. For the soluble pollutants that cause acute impact the model involves a simple mass balance approach taking account of river flows.
- **4.3.5** For the sediment related pollutants that cause chronic impact, the impact models consider both the likelihood and extent of sediment accumulation based broadly on the chronic impact assessment procedure developed by University of Sheffield (Gaskell *et al.*, 2007).
- **4.3.6** The assessment tool incorporates a number of ecologically-based pollutant thresholds. The tool compares the predicted impacts with these thresholds to evaluate toxicity risks (Johnson *et al.*, 2007, Gaskell *et al.*, 2007).
- **4.3.7** Much of the pollution in runoff is attached to the finer sediments known as total suspended solids. If the fine sediment is removed then a significant proportion of pollutants such as hydrocarbons and metals can also be removed. For the sediment related pollutants that cause chronic impact, the impact models include additional thresholds to judge the likelihood of sediment accumulation and whether the extent of accumulation is excessive.
- **4.3.8** The HAWRAT software is designed to replicate a large number of statistically possible rainfall events and compute event statistics for key pollutants by using a database of measured road drainage data for a number of sites within the England and Wales falling within four climatic regions and various representative sub catchments and within 3 defined Annual Average Daily Traffic (AADT) volume ranges.
- **4.3.9** The HAWRAT generated EMC figures have been calculated based on the projected AADT figures for the design year 2038. In all cases for the proposed new section of motorway, this falls within the HAWRAT 50,000-100,000 AADT bracket.

4.4 Screening

4.4.1 EMC statistics provided within HD45/09 (Highways Agency *et al.*, 2009) and Crabtree *et al.* (2008) for the WTA are summarised in Table 4.1. Monitored reen ABC and the respective pollutant EQS or Probable No Effect Concentration (PNEC) are also shown for comparison with EMC concentrations. As PNECs are monitoring location specific, the range of values calculated from ten proposed WTA discharge locations using the Metal Bioavailability Assessment Tool (M-BAT, 2104) have been shown.

4.5 Runoff Receptors

4.5.1 The drainage design proposes to discharge all captured highway runoff to reens via water treatment areas (WTA). No discharges are proposed to groundwater.

- **1.1.1** Each proposed WTA has an identified reen into which the discharge would connect. Baseline surface water monitoring of these reen locations is ongoing with two of four quarterly monitoring rounds processed for inclusion within this report, which will be updated on completion of subsequent monitoring rounds. Further details are presented within the Baseline Water Environment Report (Appendix 16.2 of the ES).
- **4.5.2** The ABCs range of the key runoff pollutants for all reens are summarised in Table 4.1 together with the EMC statistics generated by HAWRAT.

Pollutant	Units	EMC min	EMC mean	EMC median	EMC max	ABC range	EQS/PNEC
Copper (dissolved)	ug/l	2.15	31.31	23.3	304	<lod -="" 5.08<="" td=""><td>2.86 - 60.45</td></lod>	2.86 - 60.45
Zinc (dissolved)	ug/l	5.0	111.1	58.3	1,360	<lod 30.7<="" td="" –=""><td>16.76 – 57.14</td></lod>	16.76 – 57.14
Cadmium (total)	ug/l	<0.01	0.63	0.29	5.4	<lod< td=""><td>0.15*</td></lod<>	0.15*
Total PAH	ug/l	<0.01	7.52	3.33	62.18	<lod 17.2<="" td="" –=""><td>ns</td></lod>	ns
Pyrene	ug/l	<0.01	1.03	0.31	12.5	<lod 1.88<="" td="" –=""><td>ns</td></lod>	ns
Fluoranthene	ug/l	<0.01	1.02	0.30	12.5	<lod 2.24<="" td="" –=""><td>0.0063</td></lod>	0.0063
Anthracene	ug/l	<0.01	0.08	0.03	0.81	<lod 0.13<="" td="" –=""><td>0.1</td></lod>	0.1
Phenanthrene	ug/l	<0.01	0.35	0.13	3.63	<lod 0.95<="" td="" –=""><td>ns</td></lod>	ns
Chloride	mg/l	5	350	66	9,760	3 - 785	250

Table 4.1: Runoff pollutant EMC, ABC and EQS/PNEC concentrations

*dissolved Class 4 hardness.

ns = no standard.

- **4.5.3** The DMRB HAWRAT methodology utilises Runoff Specific Thresholds (RST) over both 6 and 24 hour periods for both dissolved copper and zinc based on statistical rainfall and runoff relationships. Table 4.2 compares these RST with the other compliance criteria EQS and PNEC for these and other key pollutants within routine road runoff together with the ABC recorded within reens near each proposed WTA outfall point.
- **4.5.4** From inspection of Tables 4.1 and 4.2, it is apparent that reen baseline concentrations for key heavy metal and organic pollutants are significantly below EQS/PNEC and DMRB RST compliance criteria where prescribed. In addition to the minimal in-reen dilution that can be expected at each WTA outfall for treated runoff, it can be reasonably concluded that departures from existing baseline quality can be expected. Table 4.3 summarises the attenuation factors required to mitigate mean EMC to EQS, 50% EQS and ABC values.
- **4.5.5** The most appropriate previously calculated four, three and two stage treatment train Attenuation Factors (AF) efficiencies are included in Table 4.3 for comparison with the calculated AFs for preservation of the indicated compliance criteria.
- **4.5.6** It can be seen that the proposed WTA treatment train, whilst not achieving reen ABCs within discharge waters, is likely to maintain reen conditions within the EQS/PNEC at the point of discharge. Further dilution within reens due to runoff during rain events, whilst not included, represents further potential attenuation.

WTA ID	Reen ID	Water sample ID	(disso ug	g/l 6=42	(diss L RST	n zinc* solved) ıg/l '6=184 '24=92	Mean cadmium (total) ug/l	Mean PAH (total) ug/l	Mean chloride mg/l
			ABC	PNEC	ABC	PNEC	EQS=0.15*	No EQS	EQS=250
1	Pwll Bargoed Reen	1.1	0.99	2.86	2.46	16.76 ****	<lod< td=""><td><lod< td=""><td>35.30</td></lod<></td></lod<>	<lod< td=""><td>35.30</td></lod<>	35.30
2	Tyn-y-Brwyn Reen	2.2	1.29	21.75	1.50	27.14	<lod< td=""><td>1.55</td><td>43.95</td></lod<>	1.55	43.95
4a/4b	Percoed Branch East	5.2	1.12	35.59	5.29	33.42	<lod< td=""><td><lod< td=""><td>42.85</td></lod<></td></lod<>	<lod< td=""><td>42.85</td></lod<>	42.85
5	Morfa Gronw Reen	7.1	1.16	54.62	5.27	49.91	<lod< td=""><td><lod< td=""><td>29.43</td></lod<></td></lod<>	<lod< td=""><td>29.43</td></lod<>	29.43
6	Lakes Reen	12.2	0.96	57.48 ***	3.49	50.38	<lod< td=""><td><lod< td=""><td>34.73</td></lod<></td></lod<>	<lod< td=""><td>34.73</td></lod<>	34.73
7	Julians Reen	13.1	0.69	52.96	1.75	43.16	<lod< td=""><td><lod< td=""><td>34.1</td></lod<></td></lod<>	<lod< td=""><td>34.1</td></lod<>	34.1
8	Ellen Reen	14.1	<lod< td=""><td>52.57</td><td>1.43</td><td>44.55</td><td><lod< td=""><td><lod< td=""><td>25.00</td></lod<></td></lod<></td></lod<>	52.57	1.43	44.55	<lod< td=""><td><lod< td=""><td>25.00</td></lod<></td></lod<>	<lod< td=""><td>25.00</td></lod<>	25.00
8a	Black Wall Reen	15.1	<lod< td=""><td>47.31</td><td>1.44</td><td>45.82</td><td><lod< td=""><td><lod< td=""><td>22.90</td></lod<></td></lod<></td></lod<>	47.31	1.44	45.82	<lod< td=""><td><lod< td=""><td>22.90</td></lod<></td></lod<>	<lod< td=""><td>22.90</td></lod<>	22.90
9	Middle Road Reen Diversion	17.1	2.96	34.64	2.05	33.39	<lod< td=""><td><lod< td=""><td>30.30</td></lod<></td></lod<>	<lod< td=""><td>30.30</td></lod<>	30.30
10	Rush Wall South Reen	18.1	0.96	60.45 ***	1.15	57.14	<lod< td=""><td><lod< td=""><td>29.90</td></lod<></td></lod<>	<lod< td=""><td>29.90</td></lod<>	29.90
11b/c	St Bride's Brook	MR WTA	<lod< td=""><td>8.79</td><td>1.20</td><td>22.01 ****</td><td><lod< td=""><td>1.20</td><td>14.63</td></lod<></td></lod<>	8.79	1.20	22.01 ****	<lod< td=""><td>1.20</td><td>14.63</td></lod<>	1.20	14.63
12a	Prat Reen	20.1**	<lod< td=""><td>44.99</td><td>0.63</td><td>38.77</td><td><lod< td=""><td><lod< td=""><td>47.10</td></lod<></td></lod<></td></lod<>	44.99	0.63	38.77	<lod< td=""><td><lod< td=""><td>47.10</td></lod<></td></lod<>	<lod< td=""><td>47.10</td></lod<>	47.10
12b	Vurlong Reen	nd	nd	nd	nd	nd	nd	nd	nd

Table 4.2: WTA outfall reen ABC and RST concentrations

<LOD = below laboratory limit of detection

Mean concentration assumes any analyses <LOD are equivalent to a concentration of zero

*Medium hardness

**Data only available for monitoring rounds Q1 and Q2

- ***Measured DOC is above the validated range. PNEC calculated using DOC of 15 mg/l
- ****Measured pH is above the validated range. PNEC calculated using a pH of 8

nd = no data for WTA12b currently available due to dry reen conditions

Pollutant	Mean EMC ug/L	ABC ug/L	ABC AF	EQS / PNEC ug/L	50% EQS / PNEC AF	100% EQS / PNEC AF	4/3/2 Stage Treatment Train AF
Copper (dissolved)	31.31	<lod -="" 5.08<="" td=""><td>>97.3% - 83.8%</td><td>2.86 – 60.45</td><td>95.4 – 3.5%</td><td>90.9 – 0%</td><td>92/82/30%</td></lod>	>97.3% - 83.8%	2.86 – 60.45	95.4 – 3.5%	90.9 – 0%	92/82/30%
Zinc (dissolved)	111.1	<lod -="" 30.7<="" td=""><td>>99.6% - 72.4%</td><td>16.76 – 57.14</td><td>92.5 – 74.3%</td><td>84.9 – 48.6 %</td><td>92/82/30%</td></lod>	>99.6% - 72.4%	16.76 – 57.14	92.5 – 74.3%	84.9 – 48.6 %	92/82/30%
Cadmium (total)	0.63	<lod< td=""><td>>20.6%</td><td>0.15*</td><td>88.1%</td><td>76.2%</td><td>92/82/30%</td></lod<>	>20.6%	0.15*	88.1%	76.2%	92/82/30%
Total PAH	7.52	<lod 17.2<="" td="" –=""><td>>95.4% - 0%</td><td>ns</td><td>-</td><td>-</td><td>96/92/82%</td></lod>	>95.4% - 0%	ns	-	-	96/92/82%
Pyrene	1.03	<lod 1.88<="" td="" –=""><td>>98.5% - 0%</td><td>ns</td><td>-</td><td>-</td><td>96/92/82%</td></lod>	>98.5% - 0%	ns	-	-	96/92/82%
Fluoranthene	1.02	<lod 2.24<="" td="" –=""><td>>98.3 – 0%</td><td>0.0063</td><td>99.7%</td><td>99.4%</td><td>96/92/82%</td></lod>	>98.3 – 0%	0.0063	99.7%	99.4%	96/92/82%
Anthracene	0.08	<lod 0.13<="" td="" –=""><td>>81.25 - 0%</td><td>0.1</td><td>37.5%</td><td>0%</td><td>96/92/82%</td></lod>	>81.25 - 0%	0.1	37.5%	0%	96/92/82%
Phenanthrene	0.35	<lod 0.95<="" td="" –=""><td>>93.7 – 0%</td><td>ns</td><td>-</td><td>-</td><td>96/92/82%</td></lod>	>93.7 – 0%	ns	-	-	96/92/82%
Chloride	350	3 - 785	99.1% – 0%	250	64%	29%	67.5%**

Table 4.3: Runoff Attenuation Factors (AF) for ABC, 50 / 100% EQS/PNEC

ns = no standard. *Medium hardness. ** Lowest AF value taken from Table 3.7. PNEC used if available, if not EQS.

4.6 DMRB Method A: Simple Assessment

- **4.6.1** For the purposes of this risk assessment, ambient background concentrations currently identified and EQS/PNEC concentrations will be summarised at each of the proposed WTA discharges. Additionally, a conventional HAWRAT assessment which determines compliance against predefined 6 hour and 24 hour Runoff Specific Thresholds (RSTs) has been conducted for WTA discharges. These assessments include acute impacts arising from dissolved loads and both Threshold Effect Levels (TELs) and Probable Effect Levels (PELs) for chronic impacts arising from sediment loads.
- **4.6.2** Given the very low flows expected within reens accepting WTA discharges, a nominal flow of 0.5 litres/second (I/s) is applied to the HAWRAT assessment to provide compliance assessments in the absence of in channel dilution. This figure compares with the greenfield runoff rates to reens from WTA, which are dependent on catchment sizes, ranging between 1.0 and 55.3 l/s with an average of approximately 20 l/s. Rainfall events generating flows from the WTA would in any case also stimulate flows within reens due to the anticipated pronounced runoff from well drained land within the Gwent Levels. Similarly, no base flow to reens is accounted for within the model to remove any dilution that may occur as a result of recharge from groundwater. It is therefore considered a highly conservative approach.
- **4.6.3** The input parameters utilised for the HAWRAT assessments are summarised in Table 4.4.

Parameter	Units	Value(s)	Justification
Climatic region	-	Warm wet	One of 4 HAWRAT default option for south west UK
Rainfall site	-	Cardiff	SAAR 1,111.7 mm. One of 5 HAWRAT default options. Newport (850mm) + 30% climate change = 1,105 mm
Annual average daily traffic (AADT)	Vehicles / day	>=50,000 and <100,000	One of 3 HAWRAT default options based on Traffic Model predicted vehicle for design year 2038
Reen surface water hardness	mg/L as CaCO₃	Medium 50-250	Baseline Water Environment Report
Width	m	4.2 25 100	Drainage Strategy Report for Replacement Reen Low Tide Ebbw Low Tide Usk
Reen annual 95th flow	m³/s	0.0005	0.5 l/s. Professionally judged very low flow
Base flow	[1]	0	Assume no base flow from Tidal Flat Deposits
Treatment for solubles	%	91.4 / 82.2	Table 3.6a and 3.6b. Cumulative Treatment Efficiencies of Drainage System with / without grass lined channels
Treatment of sediments	%	95.6 / 91.9	Table 3.6a and 3.6b. Cumulative Treatment Efficiencies of Drainage System with / without grass lined channels
Restricted discharge rate	l/s	varied	Individual WTA outfall discharges defined in Table 1 of Drainage Strategy Report
Impermeable road area drained	На	varied	Individual WTA contributing impermeable areas defined in Table 1 of Drainage Strategy Report
Permeable area draining to outfall	На	0	Only road surface considered

Table 4.4: HAWRAT Method A Input Parameters

4.6.4 The HAWRAT assessments for the proposed new section of motorway have utilised rainfall statistics for Cardiff within a 'warm and wet' region owing to the absence of rainfall data for Newport. Although Cardiff receives standard annual average rainfall (SAAR) of 1117.2 mm, higher than that for Newport of 850 mm, it is considered representative when a 30% increase for climate change is allowed for.

HAWRAT Method A Results

- **4.6.5** Individual HAWRAT assessment sheets for each WTA are presented in Annex A. The results are summarised in Table 4.5.
- **4.6.6** All WTA discharges have been assessed as likely to present acceptable discharges to the reens within DMRB compliance criteria.

Side Road Discharges

A number of existing side roads would be provided with new outfalls for sections crossed by the new section of motorway or reconnected to relocated junctions. Owing to the low traffic anticipated on these side roads which serve the rural road network within the Levels south of the new section of motorway, only a flood attenuation basin and petrol interceptor are proposed. This represents an improvement on the baseline standard. Details of the new side road discharges are summarised in Table 4.6.

WTA	Receiving	Soluble - impa		Significance	Sediment – chronic	Significance
ID	Reen	Copper	Zinc	orginineariee	impact	orginiteatiee
1	Pwll Bargoed Reen	Pass	Pass	Neutral	Pass	Neutral
2	Tyn-y-Brwyn Reen	Pass	Pass	Neutral	Pass	Neutral
4a/4 b	Percoed Branch East	Pass	Pass	Neutral	Pass	Neutral
5	Morfa Gronw Reen	Pass	Pass	Neutral	Pass	Neutral
6	Lakes Reen	Pass	Pass	Neutral	Pass	Neutral
7	Julians Reen	Pass	Pass	Neutral	Pass	Neutral
8	Ellen Reen	Pass	Pass	Neutral	Pass	Neutral
8a	Black Wall Reen	Pass	Pass	Neutral	Pass	Neutral
9	Middle Road Reen Diversion	Pass	Pass	Neutral	Pass	Neutral
10	Rush Wall South Reen	Pass	Pass	Neutral	Pass	Neutral
11b/c	St Bride's Brook	Pass	Pass	Neutral	Pass	Neutral
12a	Prat Reen	Pass	Pass	Neutral	Pass	Neutral
12b	Vurlong Reen	Pass	Pass	Neutral	Pass	Neutral

Table 4.5: HAWRAT Method A Results

Table 4.6: Proposed Side Road Discharges

Outfall	Attenuated Discharge Rate (I/s)	Impermeable Area (Ha)	Estimated runoff lagoon storage (m ³)	Receiving watercourse
Meadows Road North	1.2	0.34	350	Ditch to Julians Reen
Meadows Road South	1.2	0.34	350	Julians Reen
North Row North	1.1	0.31	350	Middle Row Reen
North Row South	1.2	0.34	350	Middle Row Reen

Estuary Discharges

4.6.7 Three highway sections of the new section of motorway are proposed to be discharged to the tidal River Ebbw and one section to the tidal River Usk as summarised in Table 4.7.

Table 4.7: Proposed Estuary Discharges

Outfall	Drained Length (m)	Impermeable Area (Ha)
Ebbw West	250	1.3
Ebbw East	1,550	11.0
Usk	950	2.9

4.6.8 The Ebbw outfalls would not be flow attenuated and would be untreated. The Usk outfall would not be flow attenuated but has the provision of a Pollution Control Lagoon to capture and retain significant pollution resulting from road accidents that may otherwise flow uncontrolled to the River Usk Special Area of

Conservation (SAC). No impacts would arise from chloride within road runoff due to the Rivers Usk and Ebbw being tidal and therefore brackish or saline.

- **4.6.9** The attenuation of these discharges is not required due to the receiving water bodies being tidal and not subject to flood volume compensation requirements.
- **4.6.10** Daily pollutant loads present within these discharge flows are considered to be insignificant following mixing within diurnal tidal volumes within both the Rivers Ebbw and Usk estuaries. Impacts from these discharges are therefore based on the criteria outlined in Chapter 16 of the ES, considered to have negligible magnitude of impact and neutral significance of effect.

Complementary Measures

- **4.6.11** Any reduction in the projected growth in traffic (AADT) utilising the reclassified M4 as a consequence of the Scheme operation would have a beneficial impact arising from reduced pollution loads associated with routine runoff entering the water environment via current drainage network.
- **4.6.12** This section of the existing M4 became operational in 1967 and as such there remains limited information about the existing motorway kerb and gully drainage system. Contemporary practice would have seen the surface water flows discharged directly to receiving watercourses almost certainly without any form of attenuation or pollution control. For the greater part, this is believed to be the situation along the existing M4 corridor in South Wales. An exception to the above is believed to be a localised stretch in the vicinity of Magor (J23 J23A) where infiltration via attenuation basins connecting flows to boreholes is understood to be used to discharge surface water flows. Two attenuation basins are to be found adjacent to the existing motorway, accessed from St. Brides Road and Rockfield Road.
- **4.6.13** The DMRB assessment methodology HAWRAT utilises three calibrated AADT bandings within which to assess routine runoff impacts 11,000-50,000 (Band 1), 50,000-100,000 (Band 2) and 100,000-159,000 (Band 3) vehicles. Only impacts arising from AADT vehicle numbers within different bands would be expressed differently by HAWRAT.
- **4.6.14** Traffic modelling predicts that the design year 2037 would generate junction averaged AADT of 121,000 vehicles for J23A to J29 without the Scheme compared to 74,000 vehicles with the Scheme. This is a reduction of 39% and represents a change in HAWRAT AADT Band 3 to Band 2 for the reclassified M4.
- **4.6.15** Table 4.8 shows the change in EMC concentration predicted for copper and zinc for the two bands.

Statistic	HAWRAT Band 2		HAWRA	T Band 3	% increase	% increase
AADT	50,000-	100,000	100,000-159,000			
Pollutant	Copper	Zinc	Copper	Zinc		
Mean	32.28	107.22	55.92	266.37	73.2%	148.4%
90%ile	62.08	215.82	107.53	536.16	73.2%	148.4%
95%ile	84.02	325.64	145.53	808.99	73.2%	148.4%
99%ile	146.64	561.77	254	1395.58	73.2%	148.4%

Table 4.8: HAWRAT AADT Band vs EMC statistics for copper and zinc

Concentrations in ug/l/.

4.6.16 Table 4.8 shows that HAWRAT utilises a multiplier of approximately 1.7 and 2.5 for copper and zinc respectively and shows the relationship between AADT and EMC to be non-linear and pollutant specific. As built detailed drainage design is unavailable for the existing M4 having been built in the 1960s and 1970s. Nevertheless, based on AADT alone, a DMRB assessment for the reclassified M4 would predict a significantly lower impact to the water environment at each of the exiting discharge points. This is concluded to generate a beneficial impact of minor magnitude and moderate significance of effect.

4.7 Method D: Assessment of Pollution Impacts from Spillages

4.7.1 Input parameters for the Method D assessment are summarised in Table 4.9.

Parameter	Units	Value	Justification
RL – road length	km	3.6	Longest length of motorway draining to WTA
SS – spillage rates	[1]	0.36-3.09	Range for motorway taken from HD45/09 Table D1.1
P _{SPL} – spillage probability	%	variable	RL x SS x (AADT x 365 x 10 ⁻⁹) x (%HGV/100)
P _{POL} – spillage pollution risk	[1]	0.45	HD45/09 Table D1.2 Surface Water for fast urban response time
P _{INC} _pollution occurring risk	[1]	<0.5	To achieve negligible magnitude under DMRB
Annual Average Daily Traffic (AADT)	vehicle s/day	71,000	Maximum modelled AADT for design year 2037
% Heavy Goods Vehicles (%HGV)	%	11	Maximum predicted %HGV from traffic model

Table 4.9: HAWRAT Method D Input Parameters

4.7.2 HD45/09 provides optimum risk reduction factors to be considered for determining whether pollution risk will be mitigated by the standard or highway drainage treatment proposed (Highways Agency *et al.*, 2009). These are summarised in Table 4.10.

Table 4.10: Optimum Pollution Risk Reduction Factors (HD45/09)

Grass Lined Channel R _{F1}	Oil Separator R _{F2}	Sediment Trap R _{F3}	Wet Balancing Pond R _{F4}	Wetland R _{F5}	Cumulative R _{F2x} R _{F4}
40%	50%	40%	50%	50%	75%

4.7.3 Of all the above risk reduction factors both an oil separator and balancing pond are components of the proposed runoff treatment trains proposed for the Scheme. A cumulative risk reduction factor of 75% using only these two complementary forms as prescribed by HD45/09 has been calculated. This equates to a reduction in risk by a factor of 4, i.e. 1 / 0.25.

HAWRAT Method D Results

4.7.4 The DMRB prescribes an acceptable annual probability of a spillage with the potential to cause a serious pollution incident (P_{INC}) of 0.5% (HD45/09)

(Highways Agency *et al.*, 2009). The calculated cumulative 4-fold risk reduction factor increases this acceptable risk to 2% (0.02).

4.7.5 The equation for deriving P_{INC} as defined by DMRB is as follows:

 $P_{INC} = RL \times SS \times (AADT \times 365 \times 10^{-9}) \times (\% HGV / 100) \times P_{POL}$

4.7.6 Taking a mitigated P_{INC} value of 0.02 and re-arranging to solve SS utilising the worst case figures from Table 4.7 gives to yield an acceptable spillage rate:

SS = P_{INC} / { (RL x AADT x 365 x 10⁻⁹) x (%HGV / 100) x P_{POL} } = 4.33

- **4.7.7** The calculated acceptable spillage rate, SS, for the longest section of the motorway draining to a single WTA of 4.33 is above the maximum theoretical risk motorways of 3.09 prescribed for motorway sections terminating at roundabouts, with motorway sections having slip road junctions (being typical of the proposed new length of motorway) prescribed a risk rate of 0.43, being 10 times lower.
- **4.7.8** Following consideration of the above risk reduction factors it is concluded that the risk associated with pollution impacts from spillages is mitigated to below 0.5% as prescribed by DMRB and as such can be considered to have negligible magnitude impact and neutral significance of effect.

Complementary Measures

- **4.7.9** The predicted reduction of AADT numbers for the reclassified M4 would have a pro rata reduction in baseline P_{INC} . Furthermore, predicted reductions in the percentage of HGVs on the existing M4 will have a benefit through risk reduction of polluting accidents. To conservatively assess potential benefit as a consequence of the new section of motorway operation, AADT and HGV% figures for the existing M4 with and without the new section of motorway in place predict a minimum of 31% and 59% reduction in AADT and HGV% respectively.
- **4.7.10** These predicted reductions will directly reduce the theoretical pollution occurring risk, P_{INC} . Whilst not directly quantifiable, this can be assessed as a minor benefit to water environment as a consequence of the Scheme operation.

5 Conclusions

Table 5.1: Summary of Scheme Significance of Potential Effects

Potential Impact	Feature	Attribute	Quality	Importance	Mitigation	Magnitude	Significance
Water Quality	Pwll Bargoed Reen	SSSI Biodiversity	High	Very High	WTA1	Negligible	Neutral
Water Quality	Tyn-y-Brwyn Reen	SSSI Biodiversity	High	Very High	WTA2	Negligible	Neutral
Water Quality	Percoed Branch East	SSSI Biodiversity	High	Very High	WTA4a/4b	Negligible	Neutral
Water Quality	Morfa Gronw Reen	SSSI Biodiversity	High	Very High	WTA5	Negligible	Neutral
Water Quality	Lakes Reen	SSSI Biodiversity	High	Very High	WTA6	Negligible	Neutral
Water Quality	Julians Reen	SSSI Biodiversity	High	Very High	WTA7	Negligible	Neutral
Water Quality	Ellen Reen	SSSI Biodiversity	High	Very High	WTA8	Negligible	Neutral
Water Quality	Black Wall Reen	SSSI Biodiversity	High	Very High	WTA8a	Negligible	Neutral
Water Quality	Middle Road Reen Diversion	SSSI Biodiversity	High	Very High	WTA9	Negligible	Neutral
Water Quality	Rush Wall South Reen	SSSI Biodiversity	High	Very High	WTA10	Negligible	Neutral
Water Quality	St Bride's Brook	SSSI Biodiversity	High	Very High	WTA11b/11c	Negligible	Neutral
Water Quality	Prat Reen	SSSI Biodiversity	High	Very High	WTA12a	Negligible	Neutral
Water Quality	Vurlong Reen	SSSI Biodiversity	High	Very High	WTA12b	Negligible	Neutral
Water Quality	River USk	SAC Biodiversity	Good	Very High	Spill Lagoon	Negligible	Neutral
Water Quality	River Ebbw	Biodiversity	Good	High	Interceptor	Negligible	Neutral
Flooding from runoff	Pwll Bargoed Reen	Flow	High	Very High	WTA1	Negligible	Neutral
Flooding from runoff	Tyn-y-Brwyn Reen	Flow	High	Very High	WTA2	Negligible	Neutral
Flooding from runoff	Percoed Branch East	Flow	High	Very High	WTA4a/4b	Negligible	Neutral
Flooding from runoff	Morfa Gronw Reen	Flow	High	Very High	WTA5	Negligible	Neutral
Flooding from runoff	Lakes Reen	Flow	High	Very High	WTA6	Negligible	Neutral
Flooding from runoff	Julians Reen	Flow	High	Very High	WTA7	Negligible	Neutral
Flooding from runoff	Ellen Reen	Flow	High	Very High	WTA8	Negligible	Neutral
Flooding from runoff	Black Wall Reen	Flow	High	Very High	WTA8a	Negligible	Neutral
Flooding from runoff	Middle Road Reen Diversion	Flow	High	Very High	WTA9	Negligible	Neutral
Flooding from runoff	Rush Wall South Reen	Flow	High	Very High	WTA10	Negligible	Neutral
Flooding from runoff	St Bride's Brook	Flow	High	Very High	WTA11b/11c	Negligible	Neutral
Flooding from runoff	Prat Reen	Flow	High	Very High	WTA12a	Negligible	Neutral
Flooding from runoff	Vurlong Reen	Flow	High	Very High	WTA12b	Negligible	Neutral
Floodplain loss	Gwent Levels SSSIs	Flood water storage	High	Very High	New reens	Negligible	Neutral
Water Quality	Secondary Aquifer	Water Supply	Poor	Low	-	Negligible	Neutral

Water Treatment Area DMRB Risk Assessments

Potential Impact	Feature	Attribute	Quality	Importance	Mitigation	Magnitude	Significance
Water Quality	Mill Reen	SSSI Biodiversity	High	Very High	Reduced AADT	Minor Beneficial	Moderate
Water Quality	River Usk	SAC Biodiversity	High	Very High	Reduced AADT	Negligible	Neutral
Water Quality	Secondary Aquifers	Water Supply	Medium	Medium	Reduced AADT	Minor Beneficial	Slight

Table 5.2 Summary of Complimentary Measures Significance of Potential Effects

References

Caldicot and Wentlooge Levels Drainage Board – its history, functions and water level management plan, July 1995.

CIRIA (2004) C609 Sustainable drainage systems. Hydraulic, structural and water quality advice.

Crabtree, R.W., Dempsey, P. Moy, F., Brown, C. and Song, M (2008) Improved Determination of Pollutants in Highway Runoff – Phase 2: Final Report, WRc Plc, Report No.: UC 7697, UK

Defra / Welsh Government (2014) Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment, May 2014.

Dempsey, P. and Song, M. (2007) Improved Determination of Pollutants in Highway Runoff Phase 2 project.

Highways Agency, Transport Scotland, Welsh Assembly Government & The Department for Regional Development Northern Ireland (2006a) Design Manual for Roads and Bridges, Volume 4, Section 2, Part 9: Grassed surface water channels for highway runoff, (HA119/06) (May 2006).

Highways Agency, Transport Scotland, Welsh Assembly Government & The Department for Regional Development Northern Ireland (2006b) Design Manual for Roads and Bridges, Volume 4 Section 2 Part 1: (HA103/06) Vegetated drainage systems for highways runoff, (HA103/06) (May 2006).

Highways Agency, Transport Scotland, Welsh Assembly Government & The Department for Regional Development Northern Ireland (2009) Design Manual for Roads and Bridges, Volume 11, Section 2, Part 10: Road Drainage and the Water Environment (HD45/09)(November 2009).

Highways Agency Drainage Data Management System (HADDMS) (2009) Highways Agency Water Risk Assessment Tool (HAWRAT), Technical Manual, November 2009. Available at: www.haddms.com

Ellis, J.B., Shutes, R.B., & Revitt, D.M. (2003) Guidance manual for constructed wetlands, R&D Technical Report P2-159/TR2. Environment Agency, 2003.

Gaskell, P.N., Guymer, L. and Maltby, L., (2007) Accumulation and Dispersal of Suspended Solids in Watercourses, ECUS, University of Sheffield, University of Warwick, Report No.: HA3/368, UK Highways Agency.

Johnson, I., Harman, M. and Crabtree, R. (2007) Effects of Soluble Pollutants on the Ecology of Receiving Waters, WRc Plc, Report No.: UC 7486/1, UK Highways Agency.

Moy, F., Crabtree, R., and Simms, T. (2002) Long term monitoring of pollution from highway runoff. Environment Agency Technical Report P2-038/TR1.

UKTAG River & Lake Assessment Method, Metal Bioavailability Assessment Tool (M-BAT), 2104.

Welsh Government (2015) M4 Corridor around Newport, Drainage Strategy, October 2015.

Wilson, S., Bray, R. and Cooper, P. (2004) Sustainable Drainage Systems – Hydraulic, Structural and Water Quality Advice, Environment Agency R&D Report P2-261/20/TR (CIRIA C609)

Annexes

Annex A - HAWRAT calculation sheets

HIGHWAYS Highwa							
		e - Acute Impact		Sediment - Chronic Impact			
	rage Concentration Copper Zinc	Copper	Zinc		tion for this site is judged as:		
Step 2	3.86 14.31 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s	
Step 3	0.69 2.56 ug/l				Extensive?	No 59 Deposition Index	
Location Details Road number	M4CaN		HA Area / DBFO	numbor			
Assessment type		accoment (cingle outfull)	HA Alea / DBFO				
OS grid reference of assessment point (m)	Easting	sessment (single outfall)		Northing			
OS grid reference of outfall structure (m)	Easting	Northing					
Outfall number	WTA1	List of outfalls in					
Receiving watercourse	Pwll Bargoed Reen	1	cumulative asse	essment			
EA receiving water Detailed River Network ID	-	·	Assessor and affi	iliation			
Date of assessment	01/11/2015		Version of assess	sment			
Notes							
Step 1 Runoff Quality AADT >=50,000 and <100,000 • Climatic region Warm Wet • Rainfall site Cardiff (SAAR 1111.7mm) •							
Step 2 River Impacts Annual 95%ile	river flow (m ³ /s)	0.0005 (Enter :	zero in Annual 95%	ile river flow box to asses	ss Step 1 runoff qu	ality only)	
Impermeable r	Impermeable road area drained (ha) 9.3 Permeable area draining to outfall (ha) 0						
Base Flow Ind					servation?		
		(BFI) 0 Is the discharge in or within 1 km upstream of a protected site for conservation?					
For dissolved zinc only Water hardness Medium = 50-200 CaCO3/I							
For sediment impact only Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge?							
Tier 1 Estimated river width (m) 4.2							
Tier 2 Be	d width (m)	3 Mannin	g's n 0.07	Side slope (m/n	n) 0.5	Long slope (m/m) 0.0001	
Step 3 Mitigation Estimated effectiveness							
Step 3 Mitigation Brief description			Treatment for	Attenuation for	Settlement of	Predict Impact	
Bher description				solubles - restricted	sediments (%)		
						Show Detailed Results	
Existing measures				Unlimited 🚽 🗖	0		
Proposed measures 3 stage treatment train 82.2 32.5 91.9 Exit Tool							

HIGHWAYS Highways Agency Water Risk Assessment Tool version 1.0 November 2009								
		e - Acute Impact		Sediment - Chronic Impact				
	age Concentration				Sediment deposition for this site is judged as:			
Step 2	4.17 15.47 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s		
Step 3	0.74 2.77 ug/l				Extensive?	No 73 Deposition Index		
Location Details Road number	M4CaN		HA Area / DBFO	numbor				
Assessment type		accoment (single suffell		Onumber				
OS grid reference of assessment point (m)	Easting	sessment (single outfall	,	Northing		`		
OS grid reference of outfall structure (m)	Easting	Northing						
Outfall number	WTA2		List of outfalls in					
Receiving watercourse	Tyn-y-Brwyn Reen		cumulative asse	-				
EA receiving water Detailed River Network ID			Assessor and affi	liation				
Date of assessment	01/11/2015		Version of assess					
Notes	01/11/2013							
Step 1 Runoff Quality AADT >=50	I Runoff Quality AADT >=50,000 and <100,000 Climatic region Warm Wet Rainfall site Cardiff (SAAR 1111.7mm)							
Step 2 River Impacts Annual 95%ile	Step 2 River Impacts Annual 95% ile river flow (m ³ /s) 0.0005 (Enter zero in Annual 95% ile river flow box to assess Step 1 runoff quality only)							
Impermeable r	Impermeable road area drained (ha) 11.5 Permeable area draining to outfall (ha) 0							
Base Flow Inde	ex (BFI)	(BFI) 0 Is the discharge in or within 1 km upstream of a protected site for conservation?						
For dissolved zinc only Water hardness Medium = 50-200 CaCO3/I								
For sediment impact only Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge?								
Tier 1 Estimated river width (m) 4.2								
Tier 2 Bec	d width (m)	3 Mannii	ng's n 0.07	Side slope (m/n	n) 0.5	Long slope (m/m) 0.0001		
Step 3 Mitigation Estimated effectiveness								
Brief description			Treatment for Attenuation for Settlement of Predict Impact					
solubles (%) solubles - restricted sediments (%)								
					Show Detailed Results			
Existing measures			0	Unlimited 🚽 🗖	0			
Proposed measures 3 stage treatment train			82.2	40.1	91.9	Exit Tool		

HIGHWAYS Highwa	ys Agency Water Risk	Assessment Tool	version 1.0 Noven	nber 2009		
Annual Ave	Age Concentration Copper Zinc 3.73 13.82 ug/l 0.32 1.20 ug/l	e - Acute Impact Copper Pass	Zinc Pass	Alert. Protected Area.	Sediment - Chroni Sediment deposit Accumulating? Extensive?	c Impact tion for this site is judged as: Yes 0.00 Low flow Vel m/s No 29 Deposition Index
Location Details						[
Road number	M4CaN		HA Area / DBFO	number		
Assessment type		sessment (single outfall				
OS grid reference of assessment point (m)	Easting			Northing		
OS grid reference of outfall structure (m)	Easting			Northing		
Outfall number	WTA4a+4b		List of outfall			
Receiving watercourse	Percoed Branch Ea	st		55511611		
EA receiving water Detailed River Network ID			Assessor and affi	liation		
Date of assessment	01/11/2015		Version of assess	sment		
Notes						
Step 1 Runoff Quality AADT >=50	0,000 and <100,000 Cli	matic region Warn	n Wet 🚽	Rainfall site C	Cardiff (SAAR 1111.7mn	n) 🔽
	river flow (m³/s) bad area drained (ha) ex (BFI) 0	8.5 Perme	able area draining to	ile river flow box to asse o outfall (ha) 0 n 1 km upstream of a pro		
For dissolved zinc only Water hardnes	S Medium = 50-200 CaCC	D3/I -				
Tier 1 Est	nstream structure, lake, pon imated river width (m) d width (m)	d or canal that reduces 4.2 3 Mannie		00m of the point of discha		No Long slope (m/m) 0.0001
Step 3 Mitigation	Brief description		Treatment for solubles (%)	Estimated effectiveness Attenuation for solubles - restricted discharge rate (l/s)	s Settlement of sediments (%)	Predict Impact Show Detailed Results
Existing measures Proposed measures 4 stage treatment train			0 D 91.4	Unlimited Unlimited	0 D 95.6	Exit Tool

HIGHWAYS Highways A	gency Water Risk	Assessment Tool	version 1.0 Noven	nber 2009		
AGENCY Annual Average 0 Step 2 3.51 Step 3 0.30	Concentration er Zinc 13.00 ug/l	e - Acute Impact Copper Pass	Zinc Pass	Alert. Protected Area.	Sediment - Chroni Sediment deposit Accumulating? Extensive?	tion for this site is judged as: Yes 0.00 No 25 Deposition Index
Location Details						
Road number	M4CaN		HA Area / DBFO	number		
Assessment type		sessment (single outfall)			<u> </u>
OS grid reference of assessment point (m)	Easting			Northing		
OS grid reference of outfall structure (m)	Easting			Northing		
Outfall number	WTA5		List of outfall	-		
Receiving watercourse	Morfa Gronw Reen					
EA receiving water Detailed River Network ID			Assessor and affi	iliation		
Date of assessment	01/11/2015		Version of assess	sment		
Notes			·			
Step 1 Runoff Quality AADT >=50,000	and <100,000 - Clin	matic region Warm	• Wet	Rainfall site C	ardiff (SAAR 1111.7m	m) 🔽
Step 2 River Impacts Annual 95%ile river Impermeable road a Base Flow Index (B	area drained (ha)	7.3 Perme	able area draining to	ile river flow box to asse o outfall (ha) 0 n 1 km upstream of a pro		
For dissolved zinc only Water hardness	Medium = 50-200 CaCC	03/I –				
	ed river width (m)	d or canal that reduces t 4.2 3 Mannin	-	00m of the point of disch		No Long slope (m/m) 0.0001
Step 3 Mitigation	Brief description		Treatment for solubles (%)	Estimated effectiveness Attenuation for solubles - restricted	Settlement of sediments (%)	Predict Impact
Existing measures			0	discharge rate (l/s) Unlimited	0	Show Detailed Results
Proposed measures 4 stage treatment train			91.4	25.6	95.6	Exit Tool

HIGHWAYS Highwa	ays Agency Water Risk	Assessment Tool	version 1.0 Noven	nber 2009		
		e - Acute Impact		S	ediment - Chroni	c Impact
Annual Ave	erage Concentration Copper Zinc	Copper	Zinc		Sediment deposit	ion for this site is judged as:
Step 2	2.93 10.82 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s
Step 3	0.25 0.94 ug/l				Extensive?	No 16 Deposition Index
Location Details						
Road number	M4CaN		HA Area / DBFO	number		
Assessment type OS grid reference of assessment point (m)		sessment (single outfall)		Northing		
OS grid reference of outfall structure (m)	Easting					
Os grid reference of outian structure (m) Outfall number	Easting WTA6		List of outfall	Northing		
Receiving watercourse						
EA receiving water Detailed River Network II	Lakes Reen		Assessor and affi	liation		
Date of assessment			Version of assess			
Notes	01/11/2015		version of assess	SITCH		
Step 1 Runoff Quality AADT >=5	i0,000 and <100,000 - Cli	matic region Warm	Wet	Rainfall site Ca	rdiff (SAAR 1111.7mn	n) 🔽
Step 2 River Impacts Annual 95%ile	e river flow (m ³ /s)	0.0005 (Enter	zero in Annual 95%	ile river flow box to asses	ss Step 1 runoff qu	ality only)
Impermeable	road area drained (ha)	4.8 Perme	able area draining to	outfall (ba)		
			Ū.			
Base Flow Inc	lex (BFI)		discharge in or within	n 1 km upstream of a prot	ected site for cons	ervation?
For dissolved zinc only Water hardne	SS Medium = 50-200 CaCC)3/I				
For sediment impact only Is there a dow	nstream structure, lake, pon-	d or canal that reduces t	he velocity within 10	00m of the point of discha	rge?	No 👻 D
Tier 1 Es	timated river width (m)	4.2				
Tier 2 Be	ed width (m)	3 Mannir	ng's n 0.07	Side slope (m/m	n) 0.5	Long slope (m/m) 0.0001
Step 3 Mitigation				Estimated effectiveness		
	Brief description		Treatment for	Attenuation for	Settlement of	Predict Impact
	Ener decemption		solubles (%)	solubles - restricted	sediments (%)	
				discharge rate (l/s)		Show Detailed Results
Existing measures			0	Unlimited 🗕 🗖	0	
Proposed measures 4 stage treatment train			91.4	16.8	95.6	Exit Tool

HIGHWAYS HI	ghways Ag	gency Water Risk	Assessment Tool	version 1.0 Nover	nber 2009		
			e - Acute Impact			Sediment - Chron	ic Impact
Ann	ual Average Co Copper		Copper	Zinc		Sediment deposi	ition for this site is judged as:
Step		10.04 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s
Ster	0.23	0.87 ug/l				Extensive?	No 14 Deposition Index
Location Details Road number		M4CaN		HA Area / DBFO	numbor		
Assessment type		1	a a a mant (aingle auttal		number		
OS grid reference of assessment point	t (m)	Easting	sessment (single outfal	I,	Northing		
OS grid reference of outfall structure (n	. ,	Easting			Northing		
Outfall number		WTA7		List of outfal	-		
Receiving watercourse		Julians Reen		cumulative asse	-		
EA receiving water Detailed River Net	work ID			Assessor and aff	iliation		
Date of assessment		01/11/2015		Version of asses			
Notes		01/11/2013					
Step 1 Runoff Quality AADT	>=50,000 ar	nd <100,000 🔽 Cli	matic region Warr	m Wet 👻	Rainfall site C	Cardiff (SAAR 1111.7m	im)
Step 2 River Impacts Annual	95%ile river f	low (m ³ /s)	0.0005 (Enter	zero in Annual 95%	ile river flow box to asse	ess Step 1 runoff a	uality only)
		ea drained (ha)		eable area draining to			
		. ,		· ·			
Base Fl	ow Index (BF	I) 0	Is the	discharge in or within	n 1 km upstream of a pro	otected site for cons	servation?
For dissolved zinc only Water h	ardness	Medium = 50-200 CaCO	D3/I 🚽				
For sediment impact only Is there	a downstrea	m structure, lake, pon	d or canal that reduces	the velocity within 10	00m of the point of disch	arge?	No 🔻 D
C Tier 1	Estimated	d river width (m)	4.2				
C Tier 2	Bed width	ו (m)	3 Manni	ing's n 0.07	Side slope (m/	′m) 0.5	Long slope (m/m) 0.0001
Step 3 Mitigation			[Estimated effectivenes	S	
		Brief description		Treatment for	Attenuation for	Settlement of	Predict Impact
				solubles (%)	solubles - restricted	sediments (%)	
					discharge rate (l/s)		Show Detailed Results
Existing measures				0	Unlimited 🚽 🗖	0	
Proposed measures 4 stage treatmer	nt train			91.4	14.4	95.6	Exit Tool

HIGHWAYS High	ways Agency Water Ri	isk Assessment Tool	version 1.0 Noven	nber 2009		
		uble - Acute Impact		Se	ediment - Chronic	c Impact
Annual A	Average Concentration Copper Zinc	Copper	Zinc		Sediment depositi	ion for this site is judged as:
Step 2	3.81 14.13 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s
Step 3	0.33 1.22 ug/l				Extensive?	No 31 Deposition Index
Location Details Road number	M4CaN		HA Area / DBFO	numbor		
Assessment type		accomment (single sutfall				
OS grid reference of assessment point (m		assessment (single outfall		Northing		
OS grid reference of outfall structure (m)	Easting			Northing		
Outfall number	WTA8		List of outfall	-		
Receiving watercourse	Ellen Reen		cumulative asse	essment		
EA receiving water Detailed River Network			Assessor and affi	liation		
Date of assessment	01/11/2015		Version of assess			
Notes	01/11/2010					
Step 1 Runoff Quality AADT	>=50,000 and <100,000 ▼	Climatic region Warm	n Wet 🚽	Rainfall site Care	diff (SAAR 1111.7mm	n) 🔽
Step 2 River Impacts Annual 95%	6ile river flow (m ³ /s)	0.0005 (Enter	zero in Annual 95%i	ile river flow box to assess	s Step 1 runoff qua	ality only)
Impermeab	le road area drained (ha)		able area draining to			
			Ū.			
Base Flow	Index (BFI)	0 Is the o	discharge in or within	n 1 km upstream of a prote	ected site for conse	ervation?
For dissolved zinc only Water hard	Ness Medium = 50-200 C	aCO3/I				
For sediment impact only Is there a d	ownstream structure, lake, j	pond or canal that reduces	he velocity within 10	00m of the point of dischar	ge?	No 👻 D
Tier 1	Estimated river width (m)	4.2				
Tier 2	Bed width (m)	3 Mannir	ng's n 0.07	Side slope (m/m	0.5	Long slope (m/m) 0.0001
Step 3 Mitigation				Estimated effectiveness		
	Brief description		Treatment for	Attenuation for	Settlement of	Predict Impact
		-	solubles (%)	solubles - restricted	sediments (%)	
			•	discharge rate (l/s)		Show Detailed Results
Existing measures			0		D	
Proposed measures 4 stage treatment tra	in		91.4	31.5	5.6	Exit Tool

HIGHWAYS High	ways Ag	ency Water Risk	Assessment Tool	version 1.0 Nover	nber 2009					
			e - Acute Impact	71.0.0	:	Sediment - Chron	ic Impact			
Annuai	Average Cor Copper		Copper	Zinc		Sediment deposi	ition for this site is judged as:			
Step 2	1.19	4.46 ug/l	Pass	Pass	Alert. Protected Area.	Accumulating?	Yes 0.00 Low flow Vel m/s			
Step 3	0.21	0.80 ug/l				Extensive?	No 6 Deposition Index			
Location Details Road number		M4CaN		HA Area / DBFO	numbor					
Assessment type			accoment (cingle outfo		number					
OS grid reference of assessment point (r	n)	Easting	sessment (single outfa	п,	Northing		`			
OS grid reference of outfall structure (m)	,	Easting			Northing					
Outfall number		WTA8a		List of outfal	•					
Receiving watercourse		Black Wall Reen		cumulative asse	essment					
EA receiving water Detailed River Netwo		Diack Wall Reen		Assessor and affi	iliation					
Date of assessment		01/11/2015		Version of assess						
Notes										
Step 1 Runoff Quality AADT	>=50,000 and	d <100,000 🚽 Clin	matic region War	m Wet 👻	Rainfall site C	ardiff (SAAR 1111.7m	im) 🔽			
Step 2 River Impacts Annual 95	%ile river flo	ow (m³/s)	0.0005 (Ente	zero in Annual 95%	ile river flow box to asse	ess Step 1 runoff qu	uality only)			
Impermea	ble road are	a drained (ha)	1.0 Perm	eable area draining to	e area draining to outfall (ha)					
				· ·			servation?			
Base Flow	Index (BFI))	Is the	discharge in or within	n 1 km upstream of a pro	Directed site for cons				
For dissolved zinc only Water hard	dness	Medium = 50-200 CaCC	03/1							
For sediment impact only Is there a	downstream	n structure, lake, pon	d or canal that reduces	the velocity within 10	00m of the point of disch	arge?	No 🔻 D			
C Tier 1	Estimated	river width (m)	4.2							
Tier 2	Bed width	(m)	3 Mann	ing's n 0.07	Side slope (m/	m) 0.5	Long slope (m/m) 0.0001			
Step 3 Mitigation			[Estimated effectiveness	2				
		Brief description		Treatment for	Attenuation for	Settlement of	Predict Impact			
				solubles (%)	solubles - restricted	sediments (%)				
					discharge rate (l/s)		Show Detailed Results			
Existing measures				0	Unlimited 🚽 🗖	0				
Proposed measures 3 stage treatment tr	ain			82.2	3.5	91.9	Exit Tool			

HIGHWAYS Highways	gency Water Risk	Assessment Tool	version 1.0 Noven	nber 2009		
AGENCY Annual Average Step 2 4.6 Step 3 0.4	Concentration er Zinc 3 17.22	e - Acute Impact Copper Pass	Zinc Pass	S	Sediment - Chroni Sediment deposit Accumulating? Extensive?	ic Impact tion for this site is judged as: Yes 0.00 No 54 Deposition Index
Location Details	Т				1	
Road number	M4CaN		HA Area / DBFO	number		
Assessment type		sessment (single outfall)				
OS grid reference of assessment point (m)	Easting			Northing		
OS grid reference of outfall structure (m)	Easting			Northing		
Outfall number	WTA9		List of outfall			
Receiving watercourse	Middle Road Reen D	Diversion		SSITCH		
EA receiving water Detailed River Network ID			Assessor and affi	liation		
Date of assessment	01/11/2015		Version of assess	sment		
Notes						
Step 1 Runoff Quality AADT >=50,000	and <100,000 - Clir	matic region Warm	Wet	Rainfall site Ca	ardiff (SAAR 1111.7mr	n) 🔽
Step 2 River Impacts Annual 95%ile rive Impermeable road Base Flow Index (E	area drained (ha)	15.8 Perme	able area draining to	ile river flow box to assest o outfall (ha) 0 n 1 km upstream of a pro		
For dissolved zinc only Water hardness	Medium = 50-200 CaCO	3/1				
· ·	ed river width (m)	d or canal that reduces t 4.2 3 Mannir	-	00m of the point of discha		No Long slope (m/m) 0.0001
Step 3 Mitigation	Brief description		Treatment for solubles (%)	Estimated effectiveness Attenuation for solubles - restricted discharge rate (l/s)	Settlement of sediments (%)	Predict Impact Show Detailed Results
Existing measures			0		0 D	Show Detailed Results
Proposed measures 4 stage treatment train			91.4	55.3	95.6	Exit Tool

HIGHWAYS H	ighways Ag	gency Water Risk	Assessment Tool	version 1.0 Nove	mber 2009		
AGENCY		Copper Zinc 9.01 ug/l Pass Pass			Sediment - Chr Sediment dep Accumulating Extensive?	position for this site is judged as:	
Location Details						-	
Road number		M4CaN		HA Area / DBFO	number		
Assessment type		Non-cumulative ass	sessment (single outfa	I)			
OS grid reference of assessment poin	nt (m)	Easting			Northing		
OS grid reference of outfall structure (m)	Easting			Northing		
Outfall number		WTA10		List of outfal		i	
Receiving watercourse		Rush Wall South Re	en	cumulative asse	essment		
EA receiving water Detailed River Net	twork ID			Assessor and aff	iliation		L
Date of assessment		01/11/2015		Version of asses	sment		
Notes		4		l			
Step 1 Runoff Quality AADT	>=50,000 a	nd <100,000 - Clir	matic region War	n Wet 🚽	Rainfall site	Cardiff (SAAR 1111.	.7mm)
Imperm	95%ile river f neable road ar low Index (BF	ea drained (ha)	3.3 Perme	eable area draining t	bile river flow box to ass to outfall (ha) 0 in 1 km upstream of a p		
For dissolved zinc only Water h	nardness	Medium = 50-200 CaCO	3/1 -				
For sediment impact only Is there Tier 7 Tier 2	1 Estimated	d river width (m)	d or canal that reduces 4.2 3 Mann	-	00m of the point of disc	-	No ┏ Long slope (m/m) 0.0001
Step 3 Mitigation		Brief description		Treatment for solubles (%)	Estimated effectivenes Attenuation for solubles - restricted	ss Settlement of sediments (
Existing measures				0	discharge rate (l/s)	0	Show Detailed Results
Proposed measures 3 stage treatme	nt train			82.2	11.6	91.9	Exit Tool

HIGHWAYS AGENCY	Highways Ag	gency Water Risk	Assessment Tool	version 1.0 Nover	mber 2009				
AGENCI	Annual Average Co		e - Acute Impact Copper	Zinc		Sediment - Ch	hronic Impact		
	Copper			Zine		Sediment de	position for this site is judged as:		
	Step 2 4.11	15.23 ug/l	Pass	Pass	Alert. Protected Area.	Accumulatin			
	Step 3 0.73	2.73 ug/l				Extensive?	No 69 Deposition Inde		
Location Details Road number		M4CaN		HA Area / DBFO	number				
Assessment type			sessment (single outfall						
OS grid reference of assessment	t point (m)	Easting		/	Northing				
OS grid reference of outfall struct	ture (m)	Easting			Northing				
Outfall number		WTA11b + 11c		List of outfal	-				
Receiving watercourse		St Brides Brook		cumulative asse	essment				
EA receiving water Detailed Rive	er Network ID			Assessor and aff	filiation				
Date of assessment		01/11/2015		Version of asses	sment				
Notes									
Step 1 Runoff Quality A	ADT >=50,000 ar	nd <100,000 - Clir	matic region Warn	n Wet 🚽	Rainfall site	Cardiff (SAAR 111	1.7mm)		
Step 2 River Impacts Ar	nnual 95%ile river f	low (m ³ /s)	0.0005 (Enter						
		· · ·			bile river flow box to as		on quality only)		
Im	npermeable road ar	ea drained (ha)	11.0 Perme	able area draining t	draining to outfall (ha)				
Ba	ase Flow Index (BF	I) 0	Is the	discharge in or withi	in 1 km upstream of a p	rotected site for	r conservation? Yes 👻		
For dissolved zinc only W	ater hardness	Medium = 50-200 CaCO	3/1 🚽						
For sediment impact only is	there a downstrear	n structure, lake, pono	d or canal that reduces	the velocity within 1	00m of the point of disc	harge?	No 🖵 D		
G	Tier 1 Estimated	d river width (m)	4.2						
C	Tier 2 Bed width	n (m)	3 Manni	ng's n 0.07	□ Side slope (n	n/m) 0.5	Long slope (m/m) 0.0001		
Step 3 Mitigation					Estimated effectivene	SS			
		Brief description		Treatment for	Attenuation for	Settlement	t of Predict Impact		
		•		solubles (%)	solubles - restricted	sediments (
Existing measures			[0	discharge rate (I/s)	0	Show Detailed Resul		
						-			
Proposed measures 3 stage tro	eatment train			82.2	35.3	91.9	Exit Tool		

HIGHWAYS High	ways Agency Water Risk	Assessment Tool	version 1.0 Nover	nber 2009				
AGENCY Annual Step 2	Average Concentration Copper Zinc 4.49 16.71 ug/l	le - Acute Impact Copper	Zinc	Sed	ent - Chronic Im ment deposition frumulating?	or this site is judged as:		
Step 3	0.80 2.99 ug/l				ensive? No			
Location Details								
Road number	M4CaN		HA Area / DBFO	number				
Assessment type		sessment (single outfall)				•		
OS grid reference of assessment point (m	-			Northing				
OS grid reference of outfall structure (m)	Easting		_	Northing				
Outfall number	WTA12a		List of outfall					
Receiving watercourse	Prat Reen							
EA receiving water Detailed River Networ	'k ID		Assessor and affi	liation				
Date of assessment	01/11/2015		Version of assess	sment				
Notes								
Step 1 Runoff Quality AADT	>=50,000 and <100,000 - Cl	imatic region Warm	Wet -	Rainfall site Cardiff (S	SAAR 1111.7mm)	•		
Step 2 River Impacts Annual 959	%ile river flow (m ³ /s)	0.0005 (Enter 2	zero in Annual 95%	ile river flow box to assess Ste	ep 1 runoff quality	^r only)		
Impermeat	ble road area drained (ha)	^{14.4} Permea	able area draining to	o outfall (ha)]			
Base Flow	Index (BFI)	Is the d	he discharge in or within 1 km upstream of a protected site for conservation?					
For dissolved zinc only Water hard	ness Medium = 50-200 CaCC	D3/I 🚽						
For sediment impact only Is there a c	downstream structure, lake, por	nd or canal that reduces t	he velocity within 1	00m of the point of discharge?		No 🗸 🗅		
Tier 2	Estimated river width (m) Bed width (m)	3 Mannin	g's n 0.07	Side slope (m/m)	0.5 Lo	ong slope (m/m) 0.0001		
Step 3 Mitigation	Brief description		Treatment for		ttlement of	Predict Impact		
			solubles (%)	solubles - restricted sec discharge rate (l/s)	liments (%)			
Existing measures				Unlimited Unlimited	D	Show Detailed Results		
Proposed measures 3 stage treatment tra	ain	5	32.2	50.5 • 91.9		Exit Tool		

HIGHWAYS H	lighways Aç	gency Water Risk	Assessment Tool	version 1.0 Nove	mber 2009			
Ste	nual Average Co Copper ep 2 0.96 ep 3 0.17	oncentration	e - Acute Impact Copper Pass	Zinc Pass	Alert. Protected Area.	Sediment - Ch Sediment dep Accumulating Extensive?	position for this site is judged as:	
Location Details								
Road number		M4CaN		HA Area / DBFO	number			
Assessment type			essment (single outfa	I)				-
OS grid reference of assessment poin	. ,	Easting			Northing			
OS grid reference of outfall structure ((m)	Easting			Northing			
Outfall number		WTA12b		List of outfal				
Receiving watercourse		Vurlong Reen						
EA receiving water Detailed River Ne	twork ID			Assessor and aff	iliation			
Date of assessment		01/11/2015		Version of asses	sment			
Notes								
Step 1 Runoff Quality AADT	>=50,000 ar	nd <100,000 - Clin	natic region War	m Wet 🚽	Rainfall site	Cardiff (SAAR 1111	I.7mm)	-
Imperr	l 95%ile river f neable road ar Flow Index (BF	ea drained (ha)	0.73 Perme	eable area draining t	bile river flow box to as to outfall (ha) 0 in 1 km upstream of a p			
For dissolved zinc only Water	hardness	Medium = 50-200 CaCO3	3/1					
For sediment impact only Is there Tier Tier	1 Estimated	d river width (m)	d or canal that reduces 4.2 3 Mann	-	00m of the point of disc	-	No Long slope (m/m) 0.0001	1
Step 3 Mitigation		Brief description		Treatment for solubles (%)	Estimated effectivene Attenuation for solubles - restricted	ss Settlement sediments (
Existing measures				0	discharge rate (I/s) Unlimited	0	Show Detailed Resu	ults
Proposed measures 3 stage treatme	ent train			82.2	2.6	91.9	Exit Tool	

HIGHWAYS AGENCY	Highways Ag	gency Water Risk	Assessment Tool	version 1.0 Nove	mber 2009				
Adenci	Annual Average Co		e - Acute Impact Copper	Zinc		Sediment - C	Chronic Impact		
	Copper		oopper	Line		Sediment d	deposition for th	is site is judg	ed as:
	Step 2 0.75	2.72 ug/l	Pass	Pass	Alert. Protected Area.	Accumulati		_	ow flow Vel m/s
	Step 3 0.52	1.94 ug/l				Extensive?	? <u>No</u>	10 D	eposition Index
Location Details Road number		M4CaN		HA Area / DBFC) number				
Assessment type			sessment (single outfall						
OS grid reference of assessmen	t point (m)	Easting		/	Northing				
OS grid reference of outfall struct	ture (m)	Easting			Northing				
Outfall number		Meadow Road		List of outfa	-				
Receiving watercourse		Juliens Reen		cumulative ass	essment				
EA receiving water Detailed Rive	er Network ID			Assessor and af	filiation				
Date of assessment		01/11/2015		Version of asses	ssment				
Notes									
Step 1 Runoff Quality A	ADT >10,000 and	d <50,000 - Clir	matic region Warn	• Wet	Rainfall site	Cardiff (SAAR 11	111.7mm)		•
Step 2 River Impacts A	nnual 95%ile river f	low (m³/s)	0.0005 (Enter	zero in Annual 95%	6ile river flow box to as	sess Step 1 ru	inoff quality only)	
la la	npermeable road ar	ea drained (ha)		able area draining				,	
		. ,		-				`	Vaa
Ba	ase Flow Index (BF	0		discharge in or with	in 1 km upstream of a p	protected site fo	or conservation?	?	Yes -
For dissolved zinc only W	ater hardness	Medium = 50-200 CaCO	3/I 🖵						
For sediment impact only Is	there a downstrear	m structure, lake, pone	d or canal that reduces	the velocity within 1	100m of the point of disc	charge?		No 🗕 🛛)
	Tier 1 Estimated	d river width (m)	4.2						
C	Tier 2 Bed width	n (m)	3 Mannii	ng's n 0.07	Side slope (r	m/m) 0.5	Long s	slope (m/m)	0.0001
Step 3 Mitigation			Γ		Estimated effectivene	200			
		Brief description		Treatment for	Attenuation for	Settleme	ent of	Predict	Impact
				solubles (%)	solubles - restricted				
Existing measures				0	discharge rate (l/s)	0		how Detai	led Results
				0		-			
Proposed measures 2 stage tr	eatment train			30	2.4	82		Exit	ΤοοΙ

HIGHWAYS	Highways Ag	gency Water Risk	Assessment Tool	version 1.0 Nover	mber 2009			
AGENCY	Annual Average Co Copper Step 2 0.72 Step 3 0.51	oncentration	e - Acute Impact Copper Pass	Zinc Pass	Alert. Protected Area.	Sediment - Chro Sediment depo Accumulating? Extensive?	osition for this site is judged as:	
Location Details						1		
Road number		M4CaN		HA Area / DBFO	number			
Assessment type			sessment (single outfall)					
OS grid reference of assessme	,	Easting Easting	Northing					
	OS grid reference of outfall structure (m)		Northing					
	utfall number North Row			List of outfalls in cumulative assessment				
e e	-			ad Reen				
EA receiving water Detailed Ri	ver Network ID	Assessor and affiliation						
Date of assessment		01/11/2015		Version of assessment				
Notes								
Step 1 Runoff Quality	AADT >10,000 and	d <50,000 - Clir	matic region Warm	Wet	Rainfall site	Cardiff (SAAR 1111.7	7mm) 🔽	
	River Impacts Annual 95%ile river flow (m³/s) 0.0005 (Enter zero in Annual 95%ile river flow box to assess Step 1 runoff quality only) Impermeable road area drained (ha) 0.65 Permeable area draining to outfall (ha) 0 Base Flow Index (BFI) 0 Is the discharge in or within 1 km upstream of a protected site for conservation? Yes							
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO	J3/I ▼					
		d river width (m)	d or canal that reduces t 4.2 3 Mannir	-	00m of the point of disc	-	No Long slope (m/m) 0.0001	
Step 3 Mitigation Brief description				Estimated effectiveness Treatment for solubles (%) Attenuation for solubles - restricted Settlement of sediments (%)				
Existing measures					discharge rate (l/s)		Show Detailed Results	
Proposed measures 2 stage	e treatment train			30	2.3	82	Exit Tool	

HIGHWAYS	Highways Ag	gency Water Risk	Assessment Tool	version 1.0 Novemb	oer 2009				
AGENCI	Annual Average Co Copper Step 2 0.48 Step 3 0.48	oncentration	e - Acute Impact Copper Pass	Zinc Pass	Alert. Protected	Sedim	nulating?	on for this sit	e is judged as: 0.00 Low flow Vel m/s 55 Deposition Index
Location Details									
Road number		M4CaN		HA Area / DBFO n	umber				
Assessment type			sessment (single outfall						
OS grid reference of assessme		Easting			Northing				
OS grid reference of outfall stru	cture (m)	Easting		_	Northing				
Outfall number		Ebbw west + Ebbw east		List of outfalls in cumulative assessment					
Receiving watercourse	vatercourse River Ebbw			cumulative asses	SITIETIC				
EA receiving water Detailed Riv	ver Network ID			Assessor and affiliation				·	
Date of assessment	01/11/2015			Version of assessment					
Notes		1							
Step 1 Runoff Quality	AADT >=50,000 ar	nd <100,000 - Clir	matic region Warm	Wet 🚽	Rainfall site	Cardiff (SA	AR 1111.7mm)	-
	Annual 95%ile river flow (m³/s) 0.01 (Enter zero in Annual 95%ile river flow box to assess Step 1 runoff quality only) Impermeable road area drained (ha) 5.3 Permeable area draining to outfall (ha) 0 Base Flow Index (BFI) 0 Is the discharge in or within 1 km upstream of a protected site for conservation? Yes -								
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO	3/I						
For sediment impact only Is there a downstream structure, lake, pond or canal that reduces the velocity within 100m of the point of discharge? No Image: Constraint of the point of discharge Image: Tier 1 Estimated river width (m) 25 Image: Tier 2 Bed width (m) 3 Manning's n 0.07 Image: Side slope (m/m) 0.5 Long slope (m/m) 0.0001									
Step 3 Mitigation Brief description				Estimated effectiveness Predict Impact Treatment for Attenuation for Settlement of					
Existing measures					solubles - rest discharge rate		nents (%)	Show	Detailed Results
Proposed measures Oil inter	ceptor				2.4	20			Exit Tool

HIGHWAYS	Highways Ag	gency Water Risk	Assessment Tool	version 1.0 Nover	mber 2009				
Adliver	Soluble - Acute Impact Annual Average Concentration Copper			Zinc	Sediment - Chronic Impact				
	Copper Step 2 0.26		Pass	Pass	Alert. Protected Area.	Sediment depos Accumulating?	ition for this site is judged as: Yes 0.00 Low flow Vel m/s		
	Step 2 0.26 Step 3 0.18	1.02 ug/l 0.71 ug/l	F 035	Fass	Alert. Protected Area.	Extensive?	No 2 Deposition Index		
Location Details		1							
Road number		M4CaN		HA Area / DBFO	number				
Assessment type			essment (single outfall)		1	•		
OS grid reference of assessmer	• • • •	Easting	Northing						
OS grid reference of outfall structure (m)		Easting	Northing						
Outfall number	mber Usk			List of outfalls in					
Receiving watercourse	River Usk			cumulative assessment					
EA receiving water Detailed Riv	A receiving water Detailed River Network ID			Assessor and aff					
Date of assessment	01/11/2015			Version of assessment					
Notes		4		l.					
Step 1 Runoff Quality	ADT >=50,000 ar	nd <100,000 - Clin	natic region Warn	n Wet 🚽	Rainfall site	Cardiff (SAAR 1111.7m	וm) 🔽		
Step 2 River Impacts	Annual 95%ile river f	low (m³/s)	0.01 (Enter	zero in Annual 95%	lile river flow box to as	sess Step 1 runoff c	juality only)		
	Impermeable road area drained (ha) 2.9 Permeable area draining to outfall (ha) 0								
E	Base Flow Index (BFI) 0 Is the discharge in or within 1 km upstream of a protected site for conservation?								
For dissolved zinc only Water hardness Medium = 50-200 CaCO3/l									
For sediment impact only	s there a downstrea	m structure, lake, pond	d or canal that reduces	the velocity within 1	00m of the point of disc	harge?	No 🖵 D		
6	Tier 1 Estimated	d river width (m)	100						
C	Tier 2 Bed width	n (m)	3 Manni	ng's n 0.07	Side slope (m	n/m) 0.5	Long slope (m/m) 0.0001		
Stop 2 Mitigation			Γ		Estimated effectivenes				
Step 3 Mitigation Brief description				Treatment for Attenuation for Settlement			Predict Impact		
solubles (%) solubles - restricted sediments (%)									
					discharge rate (l/s)		Show Detailed Results		
Existing measures 0 Unlimited Unlimited 0]		
Proposed measures 2 stage t	treatment train			30		82	Exit Tool		